Skip to main content
Log in

A mathematical model of the spray deposition process

  • Transport Phenomena
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Spray deposition is a recently developed atomization process desigted to produce high density, bulk metal shapes directly from the melt. The process consists of two basic steps: first, a molten metal stream is atomized using a gas; the spray thus produced is then collected onto a suitably designed substrate. In this paper a mathematical model for the analysis of heat transfer during SD is described. The model is in two parts: the first part calculates the thermal histories of atomized droplets in flight, whereas the second part computes the transient temperature profiles inside the growing preform. More specifically, the mathematical model estimates droplet size distribution, temperatures, fractional solidification and microstructures of the atomized droplets in the spray, and the temperature field and microstructure of the resulting deposit. In contrast atively low (1 to 10 °C/second). The results also indicate that a small fraction of liquid mixed with solid exists at the top of the growing preform during deposition. The tiny pools of liquid may play a role in the formation of the characteristic equiaxed grain microstructure of as deposited preforms. The results of the calculations are very sensitive to the value of the enthalpy of the impinging spray. Therefore, the production of good quality deposits requires accurate control of the heat fluxes during deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hildeman and M.J. Koczak:Journal of Metals, Aug. 1986, vol. 38, no. 8, pp. 30–32.

    Google Scholar 

  2. A. Lawley:Journal of Metals, Aug. 1985, vol. 37, no. 8, pp. 15–25.

    Google Scholar 

  3. S.J. Savage and F.H. Froes:Journal of Metals, Apr. 1984, vol. 36, no. 4, pp. 20–33.

    CAS  Google Scholar 

  4. V.W.C. Kuo and E.A. Starke, Jr.:Metall. Trans. A, 1985, vol. 16A, pp. 1089–103.

    CAS  Google Scholar 

  5. E.J. Lavernia, G. Rai, and N.J. Grant:Journal of Materials Science and Engineering, 1985, vol. 79, no. 2, pp. 211–21.

    Article  Google Scholar 

  6. J.P.H.A. Durand, R.M. Pelloux, and N.J. Grant:Materials Science and Engineering, 1976, vol. 23, pp. 247–56.

    Article  CAS  Google Scholar 

  7. P.K. Domalavage, N.J. Grant, and Y. Gefen:Metall. Trans. A, 1983, vol. 14A, pp. 1599–608.

    CAS  Google Scholar 

  8. E. Lavernia, B. Poggiali, I. Servi, J. Clark, F. Katrak, and N.J. Grant:Journal of Metals, Nov. 1985, vol. 37, no. 11, pp. 272–79.

    Google Scholar 

  9. Y.W. Kim, W.M. Griffith, and F.H. Froes:Journal of Metals, Aug. 1985, vol. 37, no. 8, pp. 27–33.

    CAS  Google Scholar 

  10. W. Wang and N.J. Grant:International Journal of Rapid Solidification, 1984, vol. 1, pp. 157–71.

    Google Scholar 

  11. N.J. Grant, S. Kang, and W. Wang: inAluminum Lithium Alloys, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., ALME, New York, NY, 1987, pp. 171–88.

    Google Scholar 

  12. R.K. Dube:Powder Metallurgy International, 1982, vol. 14, p. 108.

    CAS  Google Scholar 

  13. R.G. Brooks, C. Moore, A.G. Leatham, and J.S. Coombs:Powder Metallurgy, 1977, vol. 2, pp. 100–02.

    Google Scholar 

  14. B. Williams:Metal Powder Report, 1980, vol. 10, pp. 464–66.

    Google Scholar 

  15. R.H. Bricknell:Metall. Trans. A, 1986, vol. 17A, pp. 583–90.

    CAS  Google Scholar 

  16. E.J. Lavernia and N.J. Grant:International Journal of Rapid Solidification, 1986, vol. 2, no. 2, pp. 93–106.

    CAS  Google Scholar 

  17. E.J. Lavernia, G. Rai, and N.J. Grant:International Journal of Powder Metallurgy, 1986, vol. 22, no. 1, pp. 9–16.

    CAS  Google Scholar 

  18. K. Ogata, E.J. Lavernia, G. Rai, and N.J. Grant:International Journal of Rapid Solidification, 1986, vol. 2, no. 1, pp. 21–35.

    CAS  Google Scholar 

  19. T.S. Chin, Y. Hara, E.J. Lavernia, R.C. O’handley, and N.J. Grant:Journal of Applied Physics, 1986, vol. 59, no. 4, pp. 1297–300.

    Article  CAS  Google Scholar 

  20. E.J. Lavernai, T. Ando, and N.J. Grant:Proceedings of the ASM’s International Conference on Rapidly Solidified Materials, P. Lee and R. Carbonara, eds.,ASM, Metal Park, OH, 1986, pp. 29–44.

    Google Scholar 

  21. P.J. Meschter, R.J. Lederich, J.E. O’Neal, E.J. Lavernia, and N.J. Grant:Annual Meeting of the Metallurgical Society, New Orleans, LA, March 2–6, 1986.

  22. J.M. Nell, G. Rai, E.J. Lavernia, and N.J. Grant:Proceedings of the 1986 Annual Powder metallurgy Conference and Exhibition, Boston, MA, May 18–21, 1986.

  23. T.W. Clyne, R.A. Ricks, and P.J. Goodhew:International Journal of Rapid Solidification, 1984, vol. 1, no. 1, pp. 59–80.

    CAS  Google Scholar 

  24. E.J. Lavernia and N.J. Grant:Metal Powder Report, April 1986, vol. 41, no. 4, pp. 255–60.

    Google Scholar 

  25. H. Lubanska:Journal of Metals, 1970, vol. 22, pp. 45–49.

    CAS  Google Scholar 

  26. G. Rai, E.J. Lavernia, and N.J. Grant:Journal of Metals, Aug. 1985, vol. 37, no. 8, pp. 22–26.

    CAS  Google Scholar 

  27. G.H. Geiger and D.R. Poirier:Transport Phenomena in Metal-lurgy, Addison-Wesley, Reading, MA, 1973, p. 135.

    Google Scholar 

  28. E.J. Lavernia, J. Nell, and M. Veistinen:International Journal of Powder Metallurgy, in press.

  29. U. Backmark, N. Backstrom, and L. Arnberg:Internal Report No. IM 1929, Swedish Institute for Metals Research, Stockholm, Sweden, 1985.

    Google Scholar 

  30. J.A. Beattle and H.P. Julien:Industrial and Engineering Chemistry, 1954, vol. 46, no. 8, pp. 1668–69.

    Article  Google Scholar 

  31. A.R.E. Singer, J.S. Coombs, and A.G. Leatham: inModern Developments in Powder Metallurgy, H.H. hausner and W.E. Smith, eds., Plenum Press, New York, NY, 1974, vol. 8, pp. 263–80.

    Google Scholar 

  32. J. Szekely:Fluid Flow Phenomena in Metals Processing, Academic Press, NY, 1979, p. 261.

    Google Scholar 

  33. H. Kurten, J. Raasch, and H. Rumpf:Chemie-Inenieur-Technik, 1966, vol. 38, no. 9, pp. 941–48.

    Article  Google Scholar 

  34. D.M. Himmelblau and K.B. Bischoff:Process Analysis and Simulation: Deterministic Systems, John Wiley and Sons, NY, 1968, p. 43.

    Google Scholar 

  35. J. Szekely and N.J. Themelis:Rate Phenomena in Process Metallurgu, John Wiley and Sons, NY, 1971, pp. 107–207; p. 611.

    Google Scholar 

  36. J. Szekely: inRate Processes of Extractive Metallurgy, H.Y. Sohn and M.E. Wadsworth, eds., ch 5, Plenum Press, NY, 1979, pp. 429–63.

    Google Scholar 

  37. C.J. Levi and R. Mehrabian:Metall. Trans. A, 1982, vol. 13A, pp. 221–34.

    CAS  Google Scholar 

  38. T.W. Clyne:Metall. Trans. B, 1984, vol. 15B, pp. 369–82.

    Article  CAS  Google Scholar 

  39. O.S. Niripochenko and Y.I. Naida:Proshykovaya Metallurgiya, Oct. 1968, vol. 70, no. 10, pp. 1–3.

    Google Scholar 

  40. W. Gill, J.H. Yang, J.C. Mollendorf, and C.M. Adam:Journal of Crystal Growth, 1984, vol. 66, pp. 351–68.

    Article  CAS  Google Scholar 

  41. S.R. Coriell and D. Turnbull:Acta Metall., 1985, vol. 30, pp. 2135–39.

    Google Scholar 

  42. H. Jones:Rapid Solidification of Metals and Alloys, The Institution of Metallurgists, London, 1982.

    Google Scholar 

  43. T.R. Anantharaman and K. Suryanarayana:Journal of Materials Science, 1971, vol. 6, pp. 1111–35.

    Article  Google Scholar 

  44. G. Gillen, P. Mathur, D. Apelian, and A. Lawley:Proceedings of the 1986 Annual Powder Metallurgy Conference and Exhibition, Boston, MA, May 18–21, 1986.

  45. N.J. Grant:Journal of Metals, 1983, vol. 35, no. 1, pp. 20–27.

    Google Scholar 

  46. J.H. Perepezko and J.S. Paik: inRapidly solidified Amorphous and Crystalline Alloys, B.H. Kear, B.C. Giessen, and M. Cohen, eds., North-Holland, NY, 1982, pp. 49–63.

    Google Scholar 

  47. Y.I. Naida, V.S. Ivanov, S.F. Fedorov, and R.B. Manasyan:Poroshkovaya Metallurgiya, April 1980, vol. 208, no. 4, pp. 1–4.

    Google Scholar 

  48. P.G. Enright, L. Katgerman, J.C. Ludwig, and S. Rogers:International Journal for Numerical Methods in Engineering, 1987, vol. 24, pp. 231–49.

    Article  Google Scholar 

  49. E.J. Lavernia: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1986.

  50. E.J. Lavernia and N.J. Grant:Proceedings of the Sixth International Conference on Rapidly Quenched Metals, Montreal, Canacia, Aug. 3 through 7, 1987. Also inMaterials Science and Engineering, in press.

  51. A.R.E. Singer and R.W. Evans:Metals Technology, Feb. 1983, vol. 10, pp. 61–68.

    CAS  Google Scholar 

  52. J. Lui, L. Arnberg, N. Backtrom, H. Klang, and S. Savage:Proceedings of the Sixth International Conference on Rapidly Quenched Metals, L’Universite de Montreal and McGrill University, Montreal, Canada, Aug. 1987.

    Google Scholar 

  53. M. Veistinen, E.J. Lavernia, Y. Hara, R.C. O’Handley, and N.J. Grant:Proceedings of the Spring Meeting of the Materials Research Society, Anaheim, CA, 1987.

  54. H. Matyja, B.C. Giessen, and N.J. Grant:Journal of the Institute of Metals, 1968, vol. 96, pp. 30–32.

    CAS  Google Scholar 

  55. R. Mehrabian:International Metals Reviews, 1982, vol. 27, no. 4, pp. 185–208.

    CAS  Google Scholar 

  56. E.J. Lavernia, E. Gomez, and N.J. Grant:Journal of Materials Science and Engineering, 1987, vol. 95, pp. 225–36.

    Article  CAS  Google Scholar 

  57. M. Veistinen, E.J. lavernia, M. Abinante, and N.J. Grant:Materials Letters, 1987, vol. 5, no. 10, pp. 373–79.

    Article  Google Scholar 

  58. J. Baram, M. Veistinen, E.J. Lavernia, and N.J. Grant: Department of Materials Science and Engineering, Massachusetts Institute of Technology, unpublished research, Cambridge, MA, 1987.

  59. J.D. Ayers and I.E. Anderson:Journal of Metals, Aug. 1985, vol. 37, no. 8, pp. 16–21.

    CAS  Google Scholar 

  60. L.J.D. Sully:American Foundrymen’s Society Transactions, 1976, vol. 84, pp. 735–44.

    CAS  Google Scholar 

  61. M.C. Flemings: inMetallurgical Treatises, J.K. Tien and J.F. Elliott, eds., TMS-AIME, Warrendale, PA, 1981, pp. 291–300.

    Google Scholar 

  62. P. Bewley and B. Cantor: inInternational Conference on Rapidly Solidified Materials, P. Lee and R. Carbonara, eds., ASM, Metals Park, OH, 1986, pp. 15–21.

    Google Scholar 

  63. A.H. Shapiro:The Dynamics and Thermodynamics of Compressible Fluid Flow, Ronald Press Co., NY, 1953, vol. 1, p. 85.

    Google Scholar 

  64. J.D. Anderson, Jr.:Modern Compressible Flow, ch. 11, McGraw-Hill, NY, 1982.

    Google Scholar 

  65. J.M. Beer and N.A. Chigier:Combustion Aerodynamics, Robert E. Krieger, ed., ch. 6. Malabar, FL, 1983.

  66. J. Szekely, J.W. Evans, and H.Y. Sohn:Gas-Solid Reactions, Academic Press, NY, 1976, p. 13.

    Google Scholar 

  67. G. Forsythe, M.A. Malcolm, and C.B. Moler:Computer Methods for Mathematical Computations, ch. 6. Prentice-Hall, Englewood Cliffs, NJ, 1977.

    Google Scholar 

  68. W.F. Ames:Numerical Methods for Partial Differential Equations, 2nd Ed., ch. 2. Academic Press, NY, 1977.

    Google Scholar 

  69. W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans. Tech. Publication, Switzerland, 1984, pp. 65–92.

    Google Scholar 

  70. D. Apelian, B.H. Kear, and H.W. Schandler: inRapidly Solidified Crystalline Alloys, S.K. Das, B.H. Kear, and C.M. Adam, eds., TMS-AIME, Warrendale, PA, 1985, pp. 93–109.

    Google Scholar 

  71. J. Madejski:International Journal of Heat and Mass Transfer, 1976, vol. 19, pp. 1009–13.

    Article  Google Scholar 

  72. E.J. Lavernia, E. Gutierrez-Miravete, J. Szekely, and N.J. Grant:International Journal of Rapid Solidification, in press.

  73. E. Gutierrez-Miravete, E.J. Lavernia, G. Trapaga, and J. Szekely:International Journal of Rapid Solidification, in press.

  74. E.J. Lavernia: Department of Mechanical Engineering, University of California at Irvine, Irvine, CA, unpublished research, 1988.

Download references

Author information

Authors and Affiliations

Authors

Additional information

E.J. Lavernia formerly, Research Associate, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez-Miravete, E., Lavernia, E.J., Trapaga, G.M. et al. A mathematical model of the spray deposition process. Metall Trans A 20, 71–85 (1989). https://doi.org/10.1007/BF02647495

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02647495

Keywords

Navigation