Skip to main content
Log in

Comprehensive impact of as-cast microstructure and ordered structures on formability of large-scale Fe–6.5 wt.%Si alloy ingots

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Large-scale Fe–6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling. The variation of the as-cast microstructure, ordered structures and the formability of the Fe–6.5 wt.%Si alloy ingots with the cooling rate during casting was investigated. Under air-cooling condition, inhomogeneous microstructures with a low proportion of equiaxed grains were formed, but the formation of ordered structures was partially inhibited, especially D03. Homogeneous microstructures with a high proportion of equiaxed grains were observed under the condition of furnace cooling, but the ordered structures were fully generated, and the degree of order is high. It is generally believed that high degree of order is the main factor of brittleness, but the homogeneous microstructure (including grain morphology and size) of the furnace-cooled sample helps to improve the formability. The influence of these two aspects on formability is contradictory. Therefore, the formability is tested through the flow stress during the compression and the microstructure after the compression. The results show that the furnace-cooled sample has better formability. For large-scale ingots, the control of as-cast microstructure becomes more significant than the control of degree of order. Slow cooling during casting is important for the large-scale ingots to have good formability meeting the requirements of direct hot rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.I. Arai, K. Ishiyama, J. Magn. Magn. Mater. 133 (1994) 233–237.

    Article  Google Scholar 

  2. K. Raviprasad, M. Tenwick, H.A. Davies, K. Chattopadhyay, Scripta Metall. 20 (1986) 1265–1270.

    Article  Google Scholar 

  3. S. Matsumura, H. Oyama, K. Oki, Mater. Trans. JIM 30 (1989) 695–706.

    Article  Google Scholar 

  4. S. Matsumura, Y. Tanaka, Y. Koga, K. Oki, Mater. Sci. Eng. A 312 (2001) 284–292.

    Article  Google Scholar 

  5. T. Yamaji, M. Abe, Y. Takada, K. Okada, T. Hiratani, J. Magn. Magn. Mater. 133 (1994) 187–189.

    Article  Google Scholar 

  6. R. Machado, A.H. Kasama, A.M. Jorge Jr., C.S. Kiminami, W.J. Botta Fo, C. Bolfarini, Mater. Sci. Eng. A 449 (2007) 854–857

    Article  Google Scholar 

  7. R. Li, Q. Shen, L. Zhang, T. Zhang, J. Magn. Magn. Mater. 281 (2004) 135–139.

    Article  Google Scholar 

  8. T. Ros-Yanez, Y. Houbaert, V. Gómez Rodríguez, J. Appl. Phys. 91 (2002) 7857–7859

    Article  Google Scholar 

  9. H.T. Liu, Z.Y. Liu, Y. Sun, F. Gao, G.D. Wang, Mater. Lett. 91 (2013) 150–153.

    Article  Google Scholar 

  10. H.Z. Li, H.T. Liu, Y. Liu, Z.Y. Liu, G.M. Cao, Z.H. Luo, F.Q. Zhang, S.L. Chen, L. Lyu, G.D. Wang, J. Magn. Magn. Mater. 370 (2014) 6–12.

    Article  Google Scholar 

  11. H.T. Liu, H.Z. Li, H.L. Li, F. Gao, G.H. Liu, Z.H. Luo, F.Q. Zhang, S.L. Chen, G.M. Cao, Z.Y. Liu, G.D. Wang, J. Magn. Magn. Mater. 391 (2015) 65–74.

    Article  Google Scholar 

  12. Y.F. Liang, F. Ye, J.P. Lin, Y.L. Wang, G.L. Chen, J. Alloy. Compd. 491 (2010) 268–270.

    Article  Google Scholar 

  13. X.S. Fang, Y.F. Liang, F. Ye, J.P. Lin, J. Appl. Phys. 111 (2012) 094913.

    Article  Google Scholar 

  14. W. Song, J.M. Zhang, Y. Liu, S.X. Wang, B. Wang, Ironmak. Steelmak. 42 (2015) 656–663.

    Article  Google Scholar 

  15. H. Li, Y.F. Liang, F. Ye, Mater. Trans. 56 (2015) 759–765.

    Article  Google Scholar 

  16. Z. Zhang, W. Wang, H. Fu, J. Xie, Mater. Sci. Eng. A 530 (2011) 519–524.

    Article  Google Scholar 

  17. Y.F. Liang, J.W. Ge, X.S. Fang, F. Ye, J.P. Lin, Mater. Sci. Eng. A 570 (2013) 8–12.

    Article  Google Scholar 

  18. H. Li, Y.F. Liang, W. Yang, F. Ye, J.P. Lin, J.X. Xie, Mater. Sci. Eng. A 628 (2015) 262–268.

    Article  Google Scholar 

  19. P. Thevoz, J.L. Desbiolles, M. Rappaz, Metall. Trans. A 20 (1989) 311–322.

    Article  Google Scholar 

  20. Z. Hou, F. Jiang, G. Cheng, ISIJ Int. 52 (2012) 1301–1309.

    Article  Google Scholar 

  21. Z.B. Hou, G.G. Cheng, Adv. Mater. Res. 402 (2012) 123–131.

    Article  Google Scholar 

  22. M.A. Martorano, C. Beckermann, C.A. Gandin, Metall. Mater. Trans. A 34 (2003) 1657–1674.

    Article  Google Scholar 

  23. J.S. Shin, Z.H. Lee, T.D. Lee, E.J. Lavernia, Scripa Mater. 45 (2001) 725–731.

    Article  Google Scholar 

  24. Y. Mo, Z. Zhang, H. Fu, H. Pan, J. Xie, Mater. Sci. Eng. A 594 (2014) 111–117.

    Article  Google Scholar 

  25. M.J. Marcinkowski, N. Brown, J. Appl. Phys. 33 (1962) 537–552.

    Article  Google Scholar 

  26. K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548–574.

    Article  Google Scholar 

  27. G.E. Lakso, M.J. Marcinkowski, Metall. Trans. 5 (1974) 839–845.

    Article  Google Scholar 

  28. R.K. Roy, M. Ghosh, A.K. Panda, R.N. Ghosh, A. Mitra, T. Indian I. Metals 63 (2010) 745–750.

    Article  Google Scholar 

  29. K. Raviprasad, K. Chattopadhyay, Acta Metall. Mater. 41 (1993) 609–624.

    Article  Google Scholar 

  30. M.J. Marcinkowski, R.M. Fisher, J. Appl. Phys. 34 (1963) 2135–2145.

    Article  Google Scholar 

  31. T. Saburi, S. Nenno, Philos. Mag. 15 (1967) 813–824.

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (51471031, U1660115) and the State Key Laboratory for Advanced Metals and Materials (2016Z-17) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Xj., Liang, Yf., Wen, Sb. et al. Comprehensive impact of as-cast microstructure and ordered structures on formability of large-scale Fe–6.5 wt.%Si alloy ingots. J. Iron Steel Res. Int. 27, 180–187 (2020). https://doi.org/10.1007/s42243-019-00281-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00281-3

Keywords

Navigation