Skip to main content
Log in

Microstructural evolution and constitutive models of 9CrMoCoB heat-resistant steel during high-temperature deformation

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to research the hot deformation behavior of 9CrMoCoB heat-resistant steel, hot compression tests were performed over a wide range of temperatures from 850 to 1150 °C and strain rates from 0.01 to 10.00 s−1. The flow stress appears to increase with the decrease in deformation temperature and the increase in strain rate. The relationship between microstructural evolution and deformation parameters was studied, indicating that both low strain rate and high deformation temperature appear to promote the dynamic recrystallization, while excessively high temperature with low strain rate would result in the high non-uniformity of grain size. The experimental stress–strain data was applied to calculate the material constants involved in the Arrhenius-type constitutive model and the modified Zerilli-Armstrong (MZA) model, and feasibility of these two models was evaluated. The results show that the MZA model is more accurate to predict the high-temperature flow behavior of the experimental steel than the Arrhenius-type constitutive equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.H. Kim, H. Kim, N.J. Kim, Nature 518 (2015) 77–79.

    Article  Google Scholar 

  2. R. Subramanian, H. Tripathy, A.K. Rai, R.N. Hajra, S. Saibaba, T. Jayakumar, E.R. Kumar, J. Nucl. Mater. 459 (2015) 150–158.

    Article  Google Scholar 

  3. X.S. Zhou, Y.C. Liu, C.X. Liu, B.Q. Ning, Mater. Sci. Eng. A 608 (2014) 46–52.

    Article  Google Scholar 

  4. L. Helis, Y. Toda, T. Hara, H. Miyazaki, F. Abe, Mater. Sci. Eng. A 510–511 (2009) 88–94.

    Article  Google Scholar 

  5. X.S. Zhou, C.X. Liu, L.M. Yu, Y.C. Liu, H.J. Li, J. Mater. Sci. Technol. 31 (2015) 235–242.

    Article  Google Scholar 

  6. S.M. Abbasi, A. Shokuhfar, Mater. Lett. 61 (2007) 2523–2526.

    Article  Google Scholar 

  7. Y.C. Lin, M.S. Chen, J. Zhong, Mater. Lett. 62 (2008) 2132–2135.

    Article  Google Scholar 

  8. Y.C. Lin, Y.J. Liang, M.S. Chen, X.M. Chen, Appl. Phys. A 123 (2017) 68.

    Article  Google Scholar 

  9. H. Shin, J.B. Kim, J. Eng. Mater. Technol. 132 (2010) 021009.

    Article  Google Scholar 

  10. A. Rusinek, J.A. Rodriguez-Martinez, A. Arias, Int. J. Mech. Sci. 52 (2010) 120–135.

    Article  Google Scholar 

  11. L. Meng, M.H. Wang, X. Liu, F.L. Wang, Appl. Phys. A 122 (2016) 11.

    Google Scholar 

  12. C.M. Sellars, W.J. McTegart, Acta Metall. 14 (1966) 1136–1138.

    Article  Google Scholar 

  13. H.Y. Li, D.D. Wei, J.D. Hu, Y.H. Li, S.L. Chen, Comput. Mater. Sci. 53 (2012) 425–430.

    Article  Google Scholar 

  14. N. Liu, Z.D. Liu, X.K. He, Z.Q. Yang, L.T. Ma, J. Iron Steel Res. Int. 23 (2016) 1342–1348.

    Article  Google Scholar 

  15. J. Dong, C. Li, C.X. Liu, Y. Huang, L.M. Yu, H.J. Li, Y.C. Liu, J. Mater. Res. 32 (2017) 3777–3787.

    Article  Google Scholar 

  16. Y. Wu, Y. Liu, C. Li, X. Xia, Y. Huang, H. Li, H. Wang, J. Alloy. Compd. 712 (2017) 687–695.

    Article  Google Scholar 

  17. X. Shi, X.F. An, C.H. Duan, J.G. Song, M.H. Zhao, J. Wang, J. Iron Steel Res. Int. 24 (2017) 625–633.

    Article  Google Scholar 

  18. Y. Wu, Y. Liu, C. Li, X. Xia, J. Wu, H. Li, J. Alloy. Compd. 771 (2019) 526–533.

    Article  Google Scholar 

  19. H. Zhang, H.J. Li, Q.Y. Guo, Y.C. Liu, L.M. Yu, J. Mater. Res. 31 (2016) 1764–1772.

    Article  Google Scholar 

  20. J. Li, F.G. Li, J. Cai, R.T. Wang, Z.W. Yuan, G.L. Ji, Comput. Mater. Sci. 71 (2013) 56–65.

    Article  Google Scholar 

  21. W.S. Lee, C.Y. Liu, Metall. Mater. Trans. A 36 (2005) 3175–3186.

    Article  Google Scholar 

  22. D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, P.V. Sivaprasad, Mater. Sci. Eng. A 526 (2009) 1–6.

    Article  Google Scholar 

  23. D. Samantaray, S. Mandal, A.K. Bhaduri, Comput. Mater. Sci. 47 (2009) 568–576.

    Article  Google Scholar 

  24. H.Y. Li, X.F. Wang, D.D. Wei, J.D. Hu, Y.H. Li, Mater. Sci. Eng. A 536 (2012) 216–222.

    Article  Google Scholar 

  25. Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen, M.S. Chen, Vacuum 137 (2017) 104–114.

    Article  Google Scholar 

  26. J. Chen, Y. Liu, C. Liu, X. Zhou, H. Li, J. Mater. Res. 32 (2017) 1376–1385.

    Article  Google Scholar 

  27. Y.C. Lin, M.S. Chen, J. Zhong, Mech. Res. Commun. 35 (2008) 142–150.

    Article  Google Scholar 

  28. Y.C. Lin, X.M. Chen, Mater. Des. 32 (2011) 1733–1759.

    Article  Google Scholar 

  29. S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, U. Borah, J. Alloy. Compd. 681 (2016) 28–42.

    Article  Google Scholar 

  30. J.R. Li, C. Gong, L. Chen, H. Zuo, Y.Z. Liu, Acta Metall. Sin. 50 (2014) 1063–1070.

    Google Scholar 

  31. P. Yan, Z.D. Liu, W. Liu, H.S. Bao, Y.Q. Weng, J. Iron Steel Res. Int. 20 (2013) 73–79.

    Article  Google Scholar 

  32. G.M. Zhang, Z.J. Zhou, H.Y. Sun, L. Zou, M. Wang, S.F. Li, J. Nucl. Mater. 455 (2014) 139–144.

    Article  Google Scholar 

  33. H.J. McQueen, N.D. Ryan, Mater. Sci. Eng. A 322 (2002) 43–63.

    Article  Google Scholar 

  34. D.N. Zou, K. Wu, Y. Han, W. Zhang, B. Cheng, G.J. Qiao, Mater. Des. 51 (2013) 975–982.

    Article  Google Scholar 

  35. A, He, L. Chen, S. Hu, C. Wang, L.X. Huangfu, Mater. Des. 46 (2013) 54–60.

    Article  Google Scholar 

  36. M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, A. Abolhasani, Mater. Des. 32 (2011) 4955–4960.

    Article  Google Scholar 

  37. Q. Lu, S. van der Zwaag, W. Xu, J. Mater. Sci. Technol. 33 (2017) 1577–1581.

    Article  Google Scholar 

  38. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, Metall. Mater. Trans. A 43 (2012) 108–123.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Granted Nos. 51474156 and U1660201) and the National Magnetic Confinement Fusion Energy Research Project (Granted No. 2015GB119001) for grant and financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen-xi Liu or Yong-chang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Ch., Liu, Cx., Liu, Yc. et al. Microstructural evolution and constitutive models of 9CrMoCoB heat-resistant steel during high-temperature deformation. J. Iron Steel Res. Int. 26, 1228–1239 (2019). https://doi.org/10.1007/s42243-019-00273-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00273-3

Keywords

Navigation