Skip to main content
Log in

Microstructure evolution and mechanical properties of 316L austenitic stainless steel with aluminum addition by warm rolling

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Microstructure evolution and mechanical properties of 316L austenitic stainless steel with aluminum addition by warm rolling at 550 °C were investigated. It is found that sample is composed of an ashen austenite matrix, a gray black ferrite phase and a small number of NiCx. The average grain sizes are 21.62, 19.66 and 19.49 μm for samples with the rolling deformation of 30%, 50% and 70%, respectively. The yield strength and tensile strength of samples with solid solution time of 30 min and deformation of 70% are higher. The fracture modes are similar and belong to toughness fracture. The fracture surfaces of the samples are composed of relatively large equal-axis ductile dimples (5–15 μm) and fine scattered ones around the dimples (< 5 μm). As the rolling deformation increases, the quantity of subgrain boundary increases and the < 101 > orientation is more prominent. {001} < 110 > rotation-cube textures are present in ferrite phase of samples and weak Goss texture is formed in austenite pole images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Kuncicka, R. Kocich, T.C. Lowe, Prog. Mater. Sci. 88 (2017) 232–280.

    Article  Google Scholar 

  2. F.L. Xu, J.Z. Duan, C.G. Lin, B.R. Hou, J. Iron Steel Res. Int. 22 (2015) 715–720.

    Article  Google Scholar 

  3. M. Mirzaei, M.H. Paydar, Mater. Des. 121 (2017) 442–449.

    Article  Google Scholar 

  4. Z.G. Song, H. Feng, S.M. Hu, J. Iron Steel Res. Int. 24 (2017) 121–130.

    Article  Google Scholar 

  5. H.H. Mao, X. Qi, J. Cao, L.C. An, Y.T. Yang, J. Iron Steel Res. Int. 24 (2017) 561–568.

    Article  Google Scholar 

  6. F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Acta Mater. 60 (2012) 1059–1071.

    Article  Google Scholar 

  7. S.G. Chowdhury, R. Singh, Scripta Mater. 58 (2008) 1102–1105.

    Article  Google Scholar 

  8. Q. Yu, C.F. Dong, J.X. Liang, Z.B. Liu, K. Xiao, X.G. Li, J. Iron Steel Res. Int. 24 (2017) 282–289.

    Article  Google Scholar 

  9. M. Martin, S. Weber, W. Theisen, T. Michler, J. Naumann, Int. J. Hydrogen Energ. 38 (2013) 5989–6001.

    Article  Google Scholar 

  10. T. Michler, J. Naumann, S. Weber, M. Martin, R. Pargeter, Int. J. Hydrogen Energ. 38 (2013) 9935–9941.

    Article  Google Scholar 

  11. L.H. Cao, C.J. Liu, Q. Zhao, M.F. Jiang, J. Iron Steel Res. Int. 24 (2017) 258–265.

    Article  Google Scholar 

  12. K. Kondo, Y. Miwa, N. Okubo, Y. Kaji, T. Tsukada, J. Nucl. Mater. 417 (2011) 892–895.

    Article  Google Scholar 

  13. S.G. Chowdhury, S. Das, P.K. De, Acta Mater. 53 (2005) 3951–3959.

    Article  Google Scholar 

  14. M. Odnobokova, A. Belyakov, R. Kaibyshev, Metals 5 (2015) 656–668.

    Article  Google Scholar 

  15. X.J. Shen, S. Tang, Y.J. Wu, X.L. Yang, J. Chen, Z.Y. Liu, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 685 (2017) 194–204.

    Article  Google Scholar 

  16. Z. Yanushkevich, A. Lugovskaya, A. Belyakov, R. Kaibyshev, Mater. Sci. Eng. A 667 (2016) 279–285.

    Article  Google Scholar 

  17. J.W. Park, J.W. Kim, Y.H. Chung, Scripta Mater. 51 (2004) 181–184.

    Article  Google Scholar 

  18. X.J. Shen, S. Tang, J. Chen, Z.Y. Liu, R.D.K. Misra, G.D. Wang, Mater. Des. 113 (2017) 137–141.

    Article  Google Scholar 

  19. M.P. Brady, Y. Yamamoto, M.L. Santella, L.R. Walker, Oxid. Met. 72 (2009) 311–333.

    Article  Google Scholar 

  20. U. Mizutani, H. Sato, M. Inukai, E.S. Zijlstra, Acta Phys. Pol. A 126 (2014) 531–534.

    Article  Google Scholar 

  21. M. Nezakat, H. Akhiani, M. Hoseini, J. Szpunar, Mater. Charact. 98 (2014) 10–17.

    Article  Google Scholar 

  22. P. Behjati, A. Kermanpur, L.P. Karjalainen, A. Jarvenpaa, M. Jaskari, H.S. Baghbadorani, A. Najafizadeh, A. Hamada, Mater. Sci. Eng. A 650 (2016) 119–128.

    Article  Google Scholar 

  23. M. Gzyl, R. Pesci, A. Rosochowski, S. Boczkal, L. Olejnik, J. Mater. Sci. 50 (2015) 2532–2543.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51561020), the Gansu Provincial Science and Technology Support Program (1304GKCA027) and the China Postdoctoral Science Foundation (2015M572615, 2016T90959).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-qing La.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., La, Pq., Li, H. et al. Microstructure evolution and mechanical properties of 316L austenitic stainless steel with aluminum addition by warm rolling. J. Iron Steel Res. Int. 25, 1068–1077 (2018). https://doi.org/10.1007/s42243-018-0155-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0155-7

Keywords

Navigation