Skip to main content
Log in

Enhanced Mechanical Properties of 316L Stainless Steel Prepared by Aluminothermic Reaction Subjected to Multiple Warm Rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Large dimensional bulk 316L stainless steels were prepared by aluminothermic reaction method and rolled at 973 K (700 °C) with different deformation, the microstructures evolution and mechanical properties were characterized in detail. The results showed that the microstructure of casting steel consists of nanocrystalline/submicrocrystalline/microcrystalline austenite and submicrocrystalline ferrite. After rolling to thickness reduction of 30, 50 and 70%, the submicrocrystalline austenite grains were crushed and dispersed more uniformly in the matrix of the steel, the grain size of submicrocrystalline austenite decreased from 246 to 136 nm. The mechanical properties of the rolled steels were significantly enhanced, with the thickness reduction increased from 30 to 70%, the tensile strength increased from 632 to 824 MPa, the yield strength increased from 425 to 615 MPa, and the elongation increased from 11 to 24%. After rolling to thickness reduction of 70%, the optimized combination of high strength and high ductility was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z. Yanushkevich, A. Lugovskaya, A. Belyakov, R. Kaibyshev, Mater. Sci. Eng. A 667, 279 (2016)

    Article  Google Scholar 

  2. G. Buzzichelli, E. Anelli, ISIJ Int. 42, 1354 (2002)

    Article  Google Scholar 

  3. M. Tikhonova, R. Kaibyshev, X. Fang, W. Wang, A. Belyakov, Mater. Charact. 70, 14 (2012)

    Article  Google Scholar 

  4. P.Q. La, F.A. Wei, X.F. Lu, C.G. Chu, Y.P. Wei, H.D. Wang, Metall. Mater. Trans. A 45(11), 5236 (2014)

    Article  Google Scholar 

  5. J.S. Lian, R.Z. Valiev, B. Baudelet, Acta Metall. Mater. 43(11), 4165 (1995)

    Article  Google Scholar 

  6. H.D. Wang, P.Q. La, T. Shi, Y.P. Wei, X.F. Lu, Mater Eng. (4), 92 (2012)

  7. F.A. Wei, P.Q. La, F.L. Ma, J. Mater. Res. 31(12), 1691 (2016)

    Article  Google Scholar 

  8. Y. Cheng et al., J. Mater. Process. Technol. 235, 134 (2016)

    Article  Google Scholar 

  9. Z. Yanushkevich, A. Mogucheva, M. Tikhonova, A. Belyakov, R. Kaibyshev, Mater. Charact. 62, 432 (2011)

    Article  Google Scholar 

  10. J. Zrnik, S.V. Dobatkin, L. Kraus, G. Raab, Steel Res. Int. 84(12), 1340 (2013)

    Article  Google Scholar 

  11. R. Mohammadzadeh, A. Akbari, Mater. Charact. 93(7), 119 (2014)

    Article  Google Scholar 

  12. W. Yinmin, C. Mingwei, Z. Fenghua, M. En, Nature 419(6910), 912 (2002)

    Article  Google Scholar 

  13. V.L. Tellkamp, E.J. Lavernia, A. Melmed, Metall. Mater. Trans. A 32(9), 2335 (2001)

    Article  Google Scholar 

  14. T. Inoue, F. Yin, Y. Kimura, Metall. Mater. Trans. A 41(2), 341 (2010)

    Article  Google Scholar 

  15. Z. Yanushkevich, A. Belyakov, R. Kaibyshev, Acta Mater. 82, 244 (2015)

    Article  Google Scholar 

  16. Y.H. Zhao, T. Topping, J.F. Bingert, Adv. Mater. 20, 3028 (2008)

    Article  Google Scholar 

  17. F. Khodabakhshi, M. Kazeminezhad, Mater. Sci. Eng. A 528, 5212 (2011)

    Article  Google Scholar 

  18. S. Bao, G. Zhao, C. Yu, Q. Chang, C. Ye, X. Mao, Appl. Math. Model. 35, 3268 (2011)

    Article  Google Scholar 

  19. D. Barraclough, C. Sellars, Metal Sci. 13, 257 (1979)

    Article  Google Scholar 

  20. A. Belyakov, H. Miura, T. Sakai, Scr. Mater. 43, 21 (2000)

    Article  Google Scholar 

  21. F. Chen, Z. Cui, D. Sui, B. Fu, Mater. Sci. Eng. A 540, 46 (2012)

    Article  Google Scholar 

  22. A. Dehghan-Manshadi, M.R. Barnett, P.D. Hodgson, Metall. Mater. Trans. A 39, 1371 (2008)

    Article  Google Scholar 

  23. P.Q. La, D. Zhang, D.L. Ma, Y.P. Wei, H.D. Wang, X.F. Lu, Int. J. Self-Propag. High-Temp. Synth. 21(2), 89 (2012)

    Article  Google Scholar 

  24. P.Q. La, F.A. Wei, X.F. Lu, T. Shi, C.G. Chu, H.D. Wang, Y.P. Wei, Philos. Mag. Lett. 94(8), 478 (2014)

    Article  Google Scholar 

  25. Z.N. Li, F.A. Wei, P.Q. La, Adv. Mater. Sci. Eng. (1), 1 (2017)

  26. K. Huang, R.E. Logé, Mater. Des. 111, 548 (2016)

    Article  Google Scholar 

  27. R. Badji, N. Kherrouba, B. Mehdi, B. Cheniti, M. Bouabdallah, C. Kahloun, B. Bacroix, Mater. Chem. Phys. 148(3), 664 (2014)

    Article  Google Scholar 

  28. B. Tian, Y.X. Tong, F. Chen, L. Li, Y.F. Zheng, Mater. Sci. Eng. A 615, 273 (2014)

    Article  Google Scholar 

  29. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, E. Lavernia, Scr. Mater. 49(4), 297 (2003)

    Article  Google Scholar 

  30. E. Rafizadeh, A. Mani, M. Kazeminezhad, Mater. Sci. Eng. A 515(1–2), 162 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51561020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Q. La.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z.N., Wei, F.A., La, P.Q. et al. Enhanced Mechanical Properties of 316L Stainless Steel Prepared by Aluminothermic Reaction Subjected to Multiple Warm Rolling. Met. Mater. Int. 24, 633–643 (2018). https://doi.org/10.1007/s12540-018-0066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0066-y

Keywords

Navigation