Skip to main content
Log in

Growth behavior of spinel in stainless steel slag during cooling process

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Spinel is an appropriate phase for sequestrating chromium in stainless steel slag to prevent chromium from polluting, and the crystal size of spinel has a significant effect on the stability of chromium and the extraction efficiency of spinel. The enrichment behavior of chromium in spinel during cooling process was investigated, and the growth process of spinel was studied based on the crystal size distribution theory. The results showed that the enrichment degree of chromium in spinel increased from 88.5% to nearly 100% during the cooling process from 1773 to 1573 K at a rate of 5 K/min. The mean diameter of spinel in stainless steel slag had an obvious growth in the cooling process, and a rapid growth of spinel occurred during the cooling process from 1623 to 1523 K. Leaching results indicated that the leaching amount of chromium could reduce to less than 0.01 mg/L by controlling the cooling condition. The growth mechanism of spinel was investigated and proposed to consist of two stages: in the first stage, the spinel was in the surface-controlled growth with a decaying nucleation rate from 1773 to 1573 K, and in the second stage, the growth mechanism was transformed to supply-controlled Ostwald ripening below 1573 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Huawei, H. Xin, Resour. Conserv. Recycl. 55 (2011) 745–754.

    Article  Google Scholar 

  2. S. Mostafaee, M. Andersson, P.G. Jönsson, Ironmak. Steelmak. 38 (2011) 90–100.

    Article  Google Scholar 

  3. R.B. Zhu, G.J. Ma, Y.S. Cai, Y.X. Chen, T. Yang, B.Y. Duan, Z.L. Xue, J. Air Waste Manage. Assoc. 66 (2016) 402–411.

    Article  Google Scholar 

  4. H. Shen, E. Forssberg, U. Nordström, Resour. Conserv. Recycl. 40 (2004) 245–271.

    Article  Google Scholar 

  5. E. Kim, J. Spooren, K. Broos, L. Horckmans, M. Quaghebeur, K.C. Vrancken, Hydrometallurgy 158 (2015) 139–148.

    Article  Google Scholar 

  6. B. Dhal, H.N. Thatoi, N.N. Das, B.D. Pandey, J. Hazard. Mater. 250–251 (2013) 272–291.

    Article  Google Scholar 

  7. F. Engström, D. Adolfsson, Q. Yang, C. Samuelsson, B. Björkman, Steel Res. Int. 81 (2010) 362–371.

    Article  Google Scholar 

  8. E. Kim, J. Spooren, K. Broos, P. Nielsen, L. Horckmans, K.C. Vrancken, M. Quaghebeur, Chem. Eng. J. 295 (2016) 542–551.

    Article  Google Scholar 

  9. G.J. Albertsson, L. Teng, B. Björkman, Trans. Inst. Min. Metall., Sect. C: Miner. Process. Extr. Metall. 123 (2014) 116–122.

    Google Scholar 

  10. G.J. Albertsson, L.D. Teng, F. Engström, S. Seetharaman, Metall. Mater. Trans. B 44 (2013) 1586–1597.

    Article  Google Scholar 

  11. Q. Zhao, C.J. Liu, P.Y. Shi, B. Zhang, M.F. Jiang, Q.S. Zhang, H. Saxén, R. Zevenhoven, Int. J. Miner. Process. 130 (2014) 95–101.

    Article  Google Scholar 

  12. Q. Zhao, C.J. Liu, B. Zhang, M.F. Jiang, J. Qi, H. Saxén, R. Zevenhoven, Steel Res. Int. 86 (2015) 1541–1547.

    Article  Google Scholar 

  13. Y. Dong, X. Wu, L. Li, ISIJ Int. 45 (2005) 1238–1242.

    Article  Google Scholar 

  14. X. Wu, L. Li, Y. Dong, ISIJ Int. 47 (2007) 402–407.

    Article  Google Scholar 

  15. J. Li, Z. Zhang, L. Liu, W. Wang, X. Wang, ISIJ Int. 53 (2013) 1696–1703.

    Article  Google Scholar 

  16. Y. Sun, Z. Li, L. Liu, X. Wang, Z. Zhang, ISIJ Int. 55 (2015) 158–165.

    Article  Google Scholar 

  17. H. Cabrera-Real, A. Romero-Serrano, B. Zeifert, A. Hernandez-Ramirez, M. Hallen-Lopez, A. Cruz-Ramirez, J. Mater. Cycles Waste Manag. 14 (2012) 317–324.

    Article  Google Scholar 

  18. E. García-Ramos, A. Romero-Serrano, B. Zeifert, P. Flores-Sánchez, M. Hallen-López, E.G. Palacios, Steel Res. Int. 79 (2008) 332–339.

    Article  Google Scholar 

  19. Q.F. Shu, Q.Y. Luo, L.J. Wang, K.C. Chou, Steel Res. Int. 86 (2015) 391–399.

    Article  Google Scholar 

  20. J.L. Li, A.J. Xu, D.F. He, Q.X. Yang, N.Y. Tian, Int. J. Miner. Metal. Mater. 20 (2013) 253–258.

    Article  Google Scholar 

  21. G. Albertsson, L. Teng, B. Björkman, S. Seetharaman, F. Engström, Steel Res. Int. 84 (2013) 670–679.

    Article  Google Scholar 

  22. L.H. Cao, C.J. Liu, Q. Zhao, M.F. Jiang, J. Iron Steel Res. Int. 24 (2017) 258–265.

    Article  Google Scholar 

  23. P. Drissen, A. Ehrenberg, M. Kühn, D. Mudersbach, Steel Res. Int. 80 (2009) 737–745.

    Google Scholar 

  24. W. Zhou, B. Xie, W.F. Tan, J. Diao, X. Zhang, H.Y. Li, JOM 68 (2016) 2520–2524.

    Article  Google Scholar 

  25. X. Zhang, B. Xie, J. Diao, X.J. Li, Ironmak. Steelmak. 39 (2012) 147–154.

    Article  Google Scholar 

  26. E. Dowty, Crystal growth and nucleation theory and the numerical simulation of igneous crystallization, Physics Magmatic Processes, Princeton University Press, 1980.

  27. C. Brime, D.D. Eberl, Mineral. Petrogr. Mitt. 82 (2002) 203–209.

    Google Scholar 

  28. R.C.F. Lentze, H.Y. McSween Jr, Meteorit. Planet. Sci. 35 (2010) 919–927.

    Article  Google Scholar 

  29. A. Torkian, N. Salehi, M. Kord, Petrology 4 (2013) 33–46.

    Google Scholar 

  30. H. Pourkhorsandi, H. Mirnejad, D. Raiesi, J. Hassanzadeh, Geol. Carpathica 66 (2015) 257–268.

    Article  Google Scholar 

  31. H.M. Yu, J.D. Xu, C.Y. Lin, L.B. Shi, X.D. Chen, J. Asian Earth Sci. 58 (2012) 1–15.

    Article  Google Scholar 

  32. D.J. Bove, D.D. Eberl, D.K. McCarty, G.P. Meeker, Am. Miner. 87 (2002) 1546–1556.

    Article  Google Scholar 

  33. D.R. Uhlmann, J. Non-Cryst. Solids 7 (1972) 337–348.

    Article  Google Scholar 

  34. D. Turnbull, J. Appl. Phys. 21 (1950) 1022–1028.

    Article  Google Scholar 

  35. J. Diao, Y. Qiao, X. Zhang, C.Q. Ji, B. Xie, CrystEngComm 17 (2015) 7300–7305.

    Article  Google Scholar 

  36. J. Diao, W. Zhou, P. Gu, Z. Ke, Y. Qiao, B. Xie, CrystEngComm 18 (2016) 6272–6281.

    Article  Google Scholar 

  37. D.D. Eberl, V.A. Drits, J. Srodon, Am. J. Sci. 298 (1998) 499–533.

    Article  Google Scholar 

  38. L.S. Li, X.R. Wu, L. Yu, Y.C. Dong, Ironmak. Steelmak. 35 (2008) 367–370.

    Article  Google Scholar 

  39. G.M. Yang, X.R. Wu, L.S. Li, Z.J. Wu, F.B. Cao, Can. Metall. Quart. 51 (2012) 150–156.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support by the National Key R&D Program of China (No. 2017YFC0805100), National Natural Science Foundation of China (Project No. 51704068 and 51374059), China Postdoctoral Science Foundation (No. 2017M610184), Fundamental Research Funds for the Central Universities (No. N172504020), and Postdoctoral Foundation of Northeastern University (No. 20170305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Lh., Liu, Cj., Zhao, Q. et al. Growth behavior of spinel in stainless steel slag during cooling process. J. Iron Steel Res. Int. 25, 1131–1139 (2018). https://doi.org/10.1007/s42243-018-0058-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0058-7

Keywords

Navigation