Skip to main content
Log in

Additive manufactured osseointegrated screws with hierarchical design

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Bone screws are devices used to fix implants or bones to bones. However, conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration. To improve osseointegration, screws are evolving from solid and smooth to porous and rough. Additive manufacturing (AM) offers a high degree of manufacturing freedom, enabling the preparation of predesigned screws that are porous and rough. This paper provides an overview of the problems currently faced by bone screws: long-term loosening and screw breakage. Next, advances in osseointegrated screws are summarized hierarchically (sub-micro, micro, and macro). At the sub-microscale level, we describe surface-modification techniques for enhancing osseointegration. At the micro level, we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws, including porosity, pore size, and pore shape. In addition, we highlight three promising pore shapes: triply periodic minimal surface, auxetic structure with negative Poisson ratio, and the Voronoi structure. At the macro level, we outline the strategies of graded design, gradient design, and topology optimization design to improve the mechanical strength of porous osseointegrated screws. Simultaneously, this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws. AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reproduced from https://si-bone.com/providers/solutions/pelvic-trauma/ifuse-torq, with permission from SI-BONE). d5 Photograph of AM osseointegrated screw for sacroiliac fusions (3D Printed implants, Genesys SIros™, Texas, USA) (Reproduced from https://www.genesysspine.com/products/sacral/lateral-sacroiliac-joint-fusion-siros-3d-printed/, with permission from Genesys). d6 Photograph of AM osseointegrated screw for sacroiliac fusions (3D™ SI Joint Fusion System, Cornerloc TransLoc, Oklahoma, USA) (Reproduced from https://cornerloc.com/transloc-3d/, with permission from Cornerloc). d7 Photograph of AM osseointegrated screw for sacroiliac fusions (FIREBIRD SI Fusion System, Orthofix, Texas, USA) (Reproduced from https://orthofix.com/products/spine-solutions/spine-procedures/si-fusion/firebird-si-fusion-system/, with permission from Orthofix). d8 Photograph of AM osseointegrated pedicle screw (Bi-Cortical/Mid-Line Porous Cannulated screw, Tsunamimedical, Ventotene, Italy) (Reproduced from https://www.tsunamimedical.com/product-category/spine/pedicle-screw-systems/modular-pedicle-screw-shafts/, with permission from Tsunamimedical). d9 Photograph of AM osseointegrated pedicle screw (Porous Cannulated screw, Tsunamimedical, Ventotene, Italy) (Reproduced from https://www.tsunamimedical.com/product-category/spine/pedicle-screw-systems/modular-pedicle-screw-shafts/, with permission from Tsunamimedical)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vuletic M, Pelivan I, Gabric D (2021) Implant prosthodontic rehabilitation after surgical treatment for an oropharyngeal malignant tumour using tantalum dental implants. Case Rep Dent 2021:5585181. https://doi.org/10.1155/2021/5585181

    Article  PubMed  PubMed Central  Google Scholar 

  2. Upfill-Brown A, Satariano N, Feeley B (2019) Stemless shoulder arthroplasty: review of short and medium-term results. JSES Open Access 3(3):154–161. https://doi.org/10.1016/j.jses.2019.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kranenburg A, Garcia-Diaz G, Cook JH et al (2022) Revision of failed sacroiliac joint posterior interpositional structural allograft stabilization with lateral porous titanium implants: a multicenter case series. Med Devices (Auckl) 15:229–239. https://doi.org/10.2147/MDER.S369808

    Article  PubMed  Google Scholar 

  4. Jain S, Eltorai AEM, Ruttiman R et al (2016) Advances in spinal interbody cages. Orthop Surg 8(3):278–284. https://doi.org/10.1111/os.12264

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moroni A, Faldini C, Pegreffi F et al (2004) HA-coated screws decrease the incidence of fixation failure in osteoporotic trochanteric fractures. Clin Orthop Relat Res 425:87–92. https://doi.org/10.1097/01.blo.0000132405.30139.bb

    Article  Google Scholar 

  6. Mudgal CS, Jupiter JB (2006) Plate and screw design in fractures of the hand and wrist. Clin Orthop Relat Res 445:68–80. https://doi.org/10.1097/01.blo.0000205887.04200.21

    Article  PubMed  Google Scholar 

  7. Shea TM, Laun J, Gonzalez-Blohm SA et al (2014) Designs and techniques that improve the pullout strength of pedicle screws in osteoporotic vertebrae: current status. Biomed Res Int 2014:748393. https://doi.org/10.1155/2014/748393

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang T, Boone C, Behn AW et al (2016) Cancellous screws are biomechanically superior to cortical screws in metaphyseal bone. Orthopedics 39(5):E828–E832. https://doi.org/10.3928/01477447-20160509-01

    Article  PubMed  Google Scholar 

  9. Phan K, Hogan J, Maharaj M et al (2015) Cortical bone trajectory for lumbar pedicle screw placement: a review of published reports. Orthop Surg 7(3):213–221. https://doi.org/10.1111/os.12185

    Article  PubMed  PubMed Central  Google Scholar 

  10. DeCoster TA, Heetderks DB, Downey DJ et al (1990) Optimizing bone screw pullout force. J Orthop Trauma 4(2):169–174. https://doi.org/10.1097/00005131-199004020-00012

    Article  CAS  PubMed  Google Scholar 

  11. Finlay JB, Harada I, Bourne RB et al (1989) Analysis of the pull-out strength of screws and pegs used to secure tibial components following total knee arthroplasty. Clin Orthop Relat Res 247(247):220–231. https://doi.org/10.1097/00003086-198910000-00032

    Article  Google Scholar 

  12. Santos ER, Sembrano JN, Mueller B et al (2011) Optimizing iliac screw fixation: a biomechanical study on screw length, trajectory, and diameter. J Neurosurg Spine 14(2):219–225. https://doi.org/10.3171/2010.9.SPINE10254

    Article  PubMed  Google Scholar 

  13. Adell R, Lekholm U, Rockler B et al (1981) A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 10(6):387–416. https://doi.org/10.1016/s0300-9785(81)80077-4

    Article  CAS  PubMed  Google Scholar 

  14. Brånemark PI, Hansson BO, Adell R et al (1977) Osseointegrated implants in the treatment of the edentulous jaw: experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 16(10):1–132

    CAS  PubMed  Google Scholar 

  15. Albrektsson T, Branemark PI, Hansson HA et al (1981) Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52(2):155–170. https://doi.org/10.3109/17453678108991776

    Article  CAS  PubMed  Google Scholar 

  16. Bencharit S, Byrd WC, Altarawneh S et al (2014) Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res 16(6):817–826. https://doi.org/10.1111/cid.12059

    Article  PubMed  Google Scholar 

  17. Das K, Bose S, Bandyopadhyay A (2009) TiO2 nanotubes on Ti: influence of nanoscale morphology on bone cell-materials interaction. J Biomed Mater Res A 90A(1):225–237. https://doi.org/10.1002/jbm.a.32088

    Article  CAS  Google Scholar 

  18. Ren B, Wan Y, Liu C et al (2021) Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: an in vitro and in vivo study. Mater Sci Eng C 118:111505. https://doi.org/10.1016/j.msec.2020.111505

    Article  CAS  Google Scholar 

  19. Kloss FR, Singh S, Haechl O et al (2013) BMP-2 immobilized on nanocrystalline diamond-coated titanium screws; demonstration of osteoinductive properties in irradiated bone. Head Neck 35(2):235–241. https://doi.org/10.1002/hed.22958

    Article  PubMed  Google Scholar 

  20. Zhao XY, Cao X (2023) Dual-functional coating that inhibits bone resorption and promotes bone formation applied to the surface modification of titanium screws. Mater Lett 349:134734. https://doi.org/10.1016/j.matlet.2023.134734

    Article  CAS  Google Scholar 

  21. Nemcakova I, Litvinec A, Mandys V et al (2022) Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep 12(1):5264. https://doi.org/10.1038/s41598-022-09183-z

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  22. Li S, Yuan HF, Pan JF et al (2017) The treatment of femoral neck fracture using VEGF-loaded nanographene coated internal fixation screws. PLoS ONE 12(11):e0187447. https://doi.org/10.1371/journal.pone.0187447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li Y, Fellander-Tsai L (2021) The bone anchored prostheses for amputees: historical development, current status, and future aspects. Biomaterials 273:120836. https://doi.org/10.1016/j.biomaterials.2021.120836

    Article  CAS  PubMed  Google Scholar 

  24. Pobloth AM, Checa S, Razi H et al (2018) Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci Transl Med 10(423):eaam8828. https://doi.org/10.1126/scitranslmed.aam8828

    Article  CAS  PubMed  Google Scholar 

  25. Dhandapani R, Krishnan PD, Zennifer A et al (2020) Additive manufacturing of biodegradable porous orthopaedic screw. Bioact Mater 5(3):458–467. https://doi.org/10.1016/j.bioactmat.2020.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xiong YZ, Wang W, Gao RN et al (2020) Fatigue behavior and osseointegration of porous Ti-6Al-4V scaffolds with dense core for dental application. Mater Des 195:108994. https://doi.org/10.1016/j.matdes.2020.108994

    Article  CAS  Google Scholar 

  27. Li L, Shi JP, Zhang KJ et al (2019) Early osteointegration evaluation of porous Ti6Al4V scaffolds designed based on triply periodic minimal surface models. J Orthop Translat 19:94–105. https://doi.org/10.1016/j.jot.2019.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tsai PI, Chen CY, Huang SW et al (2018) Improvement of bone-tendon fixation by porous titanium interference screw: a rabbit animal model. J Orthop Res 36(10):2633–2640. https://doi.org/10.1002/jor.24037

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Xu T, Bei HP et al (2022) Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds. Proc Natl Acad Sci USA 119(41):e2206684119. https://doi.org/10.1073/pnas.2206684119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gomez S, Vlad MD, Lopez J et al (2016) Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater 42:341–350. https://doi.org/10.1016/j.actbio.2016.06.032

    Article  CAS  PubMed  Google Scholar 

  31. Yao Y, Wang LZ, Li J et al (2020) A novel auxetic structure based bone screw design: tensile mechanical characterization and pullout fixation strength evaluation. Mater Des 188:108424. https://doi.org/10.1016/j.matdes.2019.108424

    Article  Google Scholar 

  32. Guo LX, Wang QD (2020) Biomechanical analysis of a new bilateral pedicle screw fixator system based on topological optimization. Int J Precis Eng Manuf 21(7):1363–1374. https://doi.org/10.1007/s12541-020-00336-6

    Article  Google Scholar 

  33. Zhang AB, Chen H, Liu Y et al (2021) Customized reconstructive prosthesis design based on topological optimization to treat severe proximal tibia defect. Bio-Des Manuf 4(1):87–99. https://doi.org/10.1007/s42242-020-00102-7

    Article  CAS  Google Scholar 

  34. Ernberg JJ, Asnis SE (1996) Materials and manufacturing of orthopaedic bone screws. In: Asnis SE, Kyle RF (Eds.), Cannulated Screw Fixation. Springer, New York, pp 1–14. https://doi.org/10.1007/978-1-4612-2326-9_1

    Chapter  Google Scholar 

  35. Schlee M, van der Schoor WP, van der Schoor ARM (2015) Immediate loading of trabecular metal-enhanced titanium dental implants: interim results from an international proof-of-principle study. Clin Implant Dent Relat Res 17(51):e308–e320. https://doi.org/10.1111/cid.12127

    Article  PubMed  Google Scholar 

  36. Kapat K, Srivas PK, Rameshbabu AP et al (2017) Influence of porosity and pore-size distribution in Ti6Al4 V foam on physicomechanical properties, osteogenesis, and quantitative validation of bone ingrowth by micro-computed tomography. ACS Appl Mater Interfaces 9(45):39235–39248. https://doi.org/10.1021/acsami.7b13960

    Article  CAS  PubMed  Google Scholar 

  37. Chang B, Song W, Han TX et al (2016) Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater 33:311–321. https://doi.org/10.1016/j.actbio.2016.01.022

    Article  CAS  PubMed  Google Scholar 

  38. Kelly CN, Wang T, Crowley J et al (2021) High-strength, porous additively manufactured implants with optimized mechanical osseointegration. Biomaterials 279:121206. https://doi.org/10.1016/j.biomaterials.2021.121206

    Article  CAS  PubMed  Google Scholar 

  39. Benedetti M, Torresani E, Leoni M et al (2017) The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav Biomed Mater 71:295–306. https://doi.org/10.1016/j.jmbbm.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  40. Pei X, Wu LN, Zhou CC et al (2020) 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study. Biofabrication 13(3):39501. https://doi.org/10.1088/1758-5090/abc060

    Article  CAS  Google Scholar 

  41. Wu MW, Chen JK, Lin BH et al (2017) Improved fatigue endurance ratio of additive manufactured Ti-6Al-4V lattice by hot isostatic pressing. Mater Des 134:163–170. https://doi.org/10.1016/j.matdes.2017.08.048

    Article  CAS  Google Scholar 

  42. Liu Q, Meng QK, Guo S et al (2013) α′ Type Ti–Nb–Zr alloys with ultra-low Young’s modulus and high strength. Prog Nat Sci 23(6):562–565. https://doi.org/10.1016/j.pnsc.2013.11.005

    Article  Google Scholar 

  43. Wang XJ, Xu SQ, Zhou SW et al (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012

    Article  CAS  PubMed  Google Scholar 

  44. Agarwal R, Gupta V, Singh J (2022) Additive manufacturing-based design approaches and challenges for orthopaedic bone screws: a state-of-the-art review. J Braz Soc Mech Sci Eng 44(1):37. https://doi.org/10.1007/s40430-021-03331-8

    Article  CAS  Google Scholar 

  45. Becker W, Becker BE, Ricci A et al (2000) A prospective multicenter clinical trial comparing one- and two-stage titanium screw-shaped fixtures with one-stage plasma-sprayed solid-screw fixtures. Clin Implant Dent Relat Res 2(3):159–165. https://doi.org/10.1111/j.1708-8208.2000.tb00007.x

    Article  CAS  PubMed  Google Scholar 

  46. Mumcu E, Bilhan H, Cekici A (2011) Marginal bone loss around implants supporting fixed restorations. J Oral Implant 37(5):549–558. https://doi.org/10.1563/aaid-joi-d-10-00018

    Article  Google Scholar 

  47. Joukar A, Kiapour A, Elgafy H et al (2020) Biomechanics of the sacroiliac joint: surgical treatments. Int J Spine Surg 14(3):355–367. https://doi.org/10.14444/7047

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mazur MD, Mahan MA, Shah LM et al (2017) Fate of S2-alar-iliac screws after 12-month minimum radiographic follow-up: preliminary results. Neurosurgery 80(1):67–72. https://doi.org/10.1227/NEU.0000000000001322

    Article  PubMed  Google Scholar 

  49. Tokuhashi Y, Matsuzaki H, Oda H et al (2008) Clinical course and significance of the clear zone around the pedicle screws in the lumbar degenerative disease. Spine 33(8):903–908. https://doi.org/10.1097/BRS.0b013e31816b1eff

    Article  PubMed  Google Scholar 

  50. Long WJ, Nayyar S, Chen KK et al (2018) Early aseptic loosening of the Tritanium primary acetabular component with screw fixation. Arthroplast Today 4(2):169–174. https://doi.org/10.1016/j.artd.2017.11.009

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sundaraj K, Salmon LJ, Heath EL et al (2020) Bioabsorbable versus titanium screws in anterior cruciate ligament reconstruction using hamstring autograft: a prospective, randomized controlled trial with 13-year follow-up. Am J Sports Med 48(6):1316–1326. https://doi.org/10.1177/0363546520911024

    Article  PubMed  Google Scholar 

  52. Taketomi S (2021) Editorial commentary: tunnel widening after anterior cruciate ligament reconstruction may increase laxity and complicate revision. Arthroscopy 37(8):2564–2566. https://doi.org/10.1016/j.arthro.2021.04.013

    Article  PubMed  Google Scholar 

  53. Putnis SE, Oshima T, Klasan A et al (2021) Adjustable suspension versus hybrid fixation in hamstring autograft anterior cruciate ligament reconstruction. Knee 28:1–8. https://doi.org/10.1016/j.knee.2020.10.014

    Article  PubMed  Google Scholar 

  54. Yang F, Chen C, Zhou QR et al (2017) Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: fabrication, biocompatibility analysis and photoelastic study. Sci Rep 7(1):45360. https://doi.org/10.1038/srep45360

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  55. Bhullar R, Habib A, Zhang KL et al (2019) Tunnel osteolysis post-ACL reconstruction: a systematic review examining select diagnostic modalities, treatment options and rehabilitation protocols. Knee Surg Sports Traumatol Arthrosc 27(2):524–533. https://doi.org/10.1007/s00167-018-5142-9

    Article  PubMed  Google Scholar 

  56. Szmukler-Moncler S, Piattelli A, Favero GA et al (2000) Considerations preliminary to the application of early and immediate loading protocols in dental implantology. Clin Oral Implant Res 11(1):12–25. https://doi.org/10.1034/j.1600-0501.2000.011001012.x

    Article  CAS  Google Scholar 

  57. Im C, Park JH, Jeon YM et al (2022) Improvement of osseointegration of Ti-6Al-4V ELI alloy orthodontic mini-screws through anodization, cyclic pre-calcification, and heat treatments. Prog Orthod 23(1):11. https://doi.org/10.1186/s40510-022-00405-8

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fraser D, Funkenbusch P, Ercoli C et al (2020) Biomechanical analysis of the osseointegration of porous tantalum implants. J Prosthet Dent 123(6):811–820. https://doi.org/10.1016/j.prosdent.2019.09.014

    Article  CAS  PubMed  Google Scholar 

  59. Chang JZ, Tsai PI, Kuo MY et al (2019) Augmentation of DMLS biomimetic fental implants with weight-bearing strut to balance of biologic and mechanical demands: from bench to animal. Materials 12(1):164. https://doi.org/10.3390/ma12010164

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  60. Hoellwarth JS, Tetsworth K, Rozbruch SR et al (2020) Osseointegration for amputees: current implants, techniques, and future directions. JBJS Rev 8(3):e0043. https://doi.org/10.2106/JBJS.RVW.19.00043

    Article  PubMed  PubMed Central  Google Scholar 

  61. Branemark R, Berlin O, Hagberg K et al (2014) A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a proprospective study of 51 patients. Bone Joint J 96B(1):106–113. https://doi.org/10.1302/0301-620x.96b1.31905

    Article  Google Scholar 

  62. Heuberer PR, Brandl G, Pauzenberger L et al (2018) Radiological changes do not influence clinical mid-term outcome in stemless humeral head replacements with hollow screw fixation: a prospective radiological and clinical evaluation. BMC Musculoskelet Disord 19(1):28. https://doi.org/10.1186/s12891-018-1945-6

    Article  PubMed  PubMed Central  Google Scholar 

  63. Alikhah A, Imiolczyk JP, Krukenberg A et al (2020) Screw fixation in stemless shoulder arthroplasty for the treatment of primary osteoarthritis leads to less osteolysis when compared to impaction fixation. BMC Musculoskelet Disord 21(1):295. https://doi.org/10.1186/s12891-020-03277-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van der Schoor P, Schlee M, Wen HB (2022) Prospective pilot study of immediately provisionalized restorations of trabecular metal-enhanced titanium dental implants: a 5-year follow-up report. Appl Sci 12(3):942. https://doi.org/10.3390/app12030942

    Article  CAS  Google Scholar 

  65. Spinato S, Zaffe D, Felice P et al (2014) A trabecular metal implant 4 months after placement: clinical-histologic case report. Implant Dent 23(1):3–7. https://doi.org/10.1097/ID.0000000000000020

    Article  PubMed  Google Scholar 

  66. Kim JT, Rudolf LM, Glaser JA (2013) Outcome of percutaneous sacroiliac joint fixation with porous plasma-coated triangular titanium implants: an independent review. Open Orthop J 7(1):51–56. https://doi.org/10.2174/1874325001307010051

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sachs D, Capobianco R (2013) Minimally invasive sacroiliac joint fusion: one-year outcomes in 40 patients. Adv Orthop 2013:536128. https://doi.org/10.1155/2013/536128

    Article  PubMed  PubMed Central  Google Scholar 

  68. Rappoport LH, Luna IY, Joshua G (2017) Minimally invasive sacroiliac joint fusion using a novel hydroxyapatite-coated screw: preliminary 1-year clinical and radiographic results of a 2-year prospective study. World Neurosurg 101:493–497. https://doi.org/10.1016/j.wneu.2017.02.046

    Article  PubMed  Google Scholar 

  69. Williams AL, Gornet MF, Butkus JK (2005) CT evaluation of lumbar interbody fusion: current concepts. AJNR 26(8):2057–2066

    PubMed  PubMed Central  Google Scholar 

  70. Kuslich SD, Ulstrom CL, Griffith SL et al (1998) The Bagby and Kuslich method of lumbar interbody fusion: history, techniques, and 2-year follow-up results of a united states prospective, multicenter trial. Spine 23(11):1267–1279. https://doi.org/10.1097/00007632-199806010-00019

    Article  CAS  PubMed  Google Scholar 

  71. Nwankwo EC, Chen FY, Nettles DL et al (2019) Five-year follow-up of distal tibia bone and foot and ankle trauma treated with a 3D-printed titanium cage. Case Rep Orthop 2019:7571013. https://doi.org/10.1155/2019/7571013

    Article  PubMed  PubMed Central  Google Scholar 

  72. El Chaar E, Castano A (2017) A retrospective survival study of trabecular tantalum implants immediately placed in posterior extraction sockets using a flapless technique. J Oral Implantol 43(2):114–124. https://doi.org/10.1563/aaid-joi-D-16-00071

    Article  PubMed  Google Scholar 

  73. Baeesa SS, Medrano BG, Noriega DC (2016) Long-term outcomes of posterior lumbar interbody fusion using stand-alone ray threaded cage for degenerative disk disease: a 20-year follow-up. Asian Spine J 10(6):1100–1105. https://doi.org/10.4184/asj.2016.10.6.1100

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nebergall A, Bragdon C, Antonellis A et al (2012) Stable fixation of an osseointegated implant system for above-the-knee amputees. Acta Orthop 83(2):121–128. https://doi.org/10.3109/17453674.2012.678799

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hawi N, Magosch P, Tauber M et al (2017) Nine-year outcome after anatomic stemless shoulder prosthesis: clinical and radiologic results. J Shoulder Elbow Surg 26(9):1609–1615. https://doi.org/10.1016/j.jse.2017.02.017

    Article  PubMed  Google Scholar 

  76. Bandyopadhyay A, Shivaram A, Tarafder S et al (2017) In vivo response of laser processed porous titanium implants for load-bearing implants. Ann Biomed Eng 45(1):249–260. https://doi.org/10.1007/s10439-016-1673-8

    Article  PubMed  Google Scholar 

  77. Xiu P, Jia ZJ, Lv J et al (2016) Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces 8(28):17964–17975. https://doi.org/10.1021/acsami.6b05893

    Article  CAS  PubMed  Google Scholar 

  78. Huang CC, Li MJ, Tsai PI et al (2020) Novel design of additive manufactured hollow porous implants. Dent Mater 36(11):1437–1451. https://doi.org/10.1016/j.dental.2020.08.011

    Article  CAS  PubMed  Google Scholar 

  79. Duan YS, Liu XD, Zhang SJ et al (2020) Selective laser melted titanium implants play a positive role in early osseointegration in type 2 diabetes mellitus rats. Dent Mater J 39(2):214–221. https://doi.org/10.4012/dmj.2018-419

    Article  CAS  PubMed  Google Scholar 

  80. Rosa GL, Clienti C, Mineo R et al (2016) Experimental analysis of pedicle screws. In: 21st European Conference on Fracture, pp 1244–1251. https://doi.org/10.1016/j.prostr.2016.06.159

  81. Lee BS, Lee HJ, Lee KS et al (2020) Enhanced osseointegration of Ti6Al4V ELI screws built-up by electron beam additive manufacturing: an experimental study in rabbits. Appl Surface Sci 508:145160. https://doi.org/10.1016/j.apsusc.2019.145160

    Article  CAS  ADS  Google Scholar 

  82. Liang HX, Yang YW, Xie DQ et al (2019) Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. J Mater Sci Technol 35(7):1284–1297. https://doi.org/10.1016/j.jmst.2019.01.012

    Article  CAS  Google Scholar 

  83. Revell PA (2008) The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J R Soc Interface 5(28):1263–1278. https://doi.org/10.1098/rsif.2008.0142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sundfeldt M, Carlsson VL, Johansson BC et al (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77(2):177–197. https://doi.org/10.1080/17453670610045902

    Article  PubMed  Google Scholar 

  85. Song P, Hu C, Pei X et al (2019) Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegration. J Mater Chem B 7(17):2865–2877. https://doi.org/10.1039/c9tb00093c

    Article  CAS  PubMed  Google Scholar 

  86. Ahmadi SM, Kumar R, Borisov EV et al (2019) From microstructural design to surface engineering: a tailored approach for improving fatigue life of additively manufactured meta-biomaterials. Acta Biomater 83:153–166. https://doi.org/10.1016/j.actbio.2018.10.043

    Article  CAS  PubMed  Google Scholar 

  87. Wang H, Su KX, Su LZ et al (2018) The effect of 3D-printed Ti6Al4V scaffolds with various macropore structures on osteointegration and osteogenesis: a biomechanical evaluation. J Mech Behav Biomed Mater 88:488–496. https://doi.org/10.1016/j.jmbbm.2018.08.049

    Article  CAS  PubMed  Google Scholar 

  88. Bai YX, Zhou R, Cao JY et al (2017) Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration. Mater Sci Eng C 76:908–917. https://doi.org/10.1016/j.msec.2017.03.071

    Article  CAS  Google Scholar 

  89. Wang N, Li H, Lu W et al (2011) Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 32(29):6900–6911. https://doi.org/10.1016/j.biomaterials.2011.06.023

    Article  CAS  PubMed  Google Scholar 

  90. Oh S, Daraio C, Chen LH et al (2006) Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 78(1):97–103. https://doi.org/10.1002/jbm.a.30722

    Article  CAS  PubMed  Google Scholar 

  91. He P, Zhang H, Li Y et al (2020) 1α,25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration. Mater Sci Eng C Mater Biol Appl 109:110551. https://doi.org/10.1016/j.msec.2019.110551

    Article  CAS  PubMed  Google Scholar 

  92. Li GL, Cao HL, Zhang WJ et al (2016) Enhanced osseointegration of hierarchical micro/nanotopographic titanium fabricated by microarc oxidation and electrochemical treatment. ACS Appl Mater Interfaces 8(6):3840–3852. https://doi.org/10.1021/acsami.5b10633

    Article  CAS  PubMed  Google Scholar 

  93. Huang JY, Li RQ, Yang JH et al (2021) Bioadaptation of implants to in vitro and in vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration. Bioactive Mater 6(10):3164–3176. https://doi.org/10.1016/j.bioactmat.2021.02.023

    Article  CAS  Google Scholar 

  94. Su EP, Justin DF, Pratt CR et al (2018) Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces. Bone Joint J 100B(1):9–16. https://doi.org/10.1302/0301-620x.100b1.Bjj-2017-0551.R1

    Article  Google Scholar 

  95. Yan CZ, Hao L, Hussein A et al (2017) Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting. Mater Sci Eng C Mater Biol Appl 75:1515–1524. https://doi.org/10.1016/j.msec.2017.03.066

    Article  CAS  PubMed  Google Scholar 

  96. Vantaggiato G, Iezzi G, Fiera E et al (2008) Histologic and histomorphometric report of three immediately loaded screw implants retrieved from man after a three-year loading period. Implant Dent 17(2):192–199. https://doi.org/10.1097/ID.0b013e318166d654

    Article  PubMed  Google Scholar 

  97. Huang YM, Huang CC, Tsai PI et al (2020) Three-dimensional printed porous titanium screw with bioactive surface modification for bone-tendon healing: a rabbit animal model. Int J Mol Sci 21(10):3628. https://doi.org/10.3390/ijms21103628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee JK, Choi DS, Jang I et al (2015) Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study. Int J Nanomedicine 10:1145–1154. https://doi.org/10.2147/IJN.S78138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao X, You L, Wang T et al (2020) Enhanced osseointegration of titanium implants by surface modification with silicon-doped titania nanotubes. Int J Nanomed 15:8583–8594. https://doi.org/10.2147/IJN.S270311

    Article  CAS  Google Scholar 

  100. Xiang YM, Liu XM, Mao CY et al (2018) Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Mater Sci Eng C Mater Biol Appl 85:214–224. https://doi.org/10.1016/j.msec.2017.12.034

    Article  CAS  PubMed  Google Scholar 

  101. Arcos D, Vallet-Regí M (2020) Substituted hydroxyapatite coatings of bone implants. J Mater Chem B 8(9):1781–1800. https://doi.org/10.1039/C9TB02710F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bakin B, Delice TK, Tiric U et al (2016) Bioactivity and corrosion properties of magnesium-substituted CaP coatings produced via electrochemical deposition. Surf Coat Tech 301:29–35. https://doi.org/10.1016/j.surfcoat.2015.12.078

    Article  CAS  Google Scholar 

  103. Fielding GA, Roy M, Bandyopadhyay A et al (2012) Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater 8(8):3144–3152. https://doi.org/10.1016/j.actbio.2012.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yamaguchi M, Oishi H, Suketa Y (1987) Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol 36(22):4007–4012. https://doi.org/10.1016/0006-2952(87)90471-0

    Article  CAS  PubMed  Google Scholar 

  105. Stanić V, Dimitrijević S, Antić-Stanković J et al (2010) Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci 256(20):6083–6089. https://doi.org/10.1016/j.apsusc.2010.03.124

    Article  CAS  ADS  Google Scholar 

  106. Utku FS, Seckin E, Goller G et al (2014) Carbonated hydroxyapatite deposition at physiological temperature on ordered titanium oxide nanotubes using pulsed electrochemistry. Ceram Int 40(10):15479–15487. https://doi.org/10.1016/j.ceramint.2014.07.004

    Article  CAS  Google Scholar 

  107. Wang J, Chao YJ, Wan QB et al (2009) Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition. Acta Biomater 5(5):1798–1807. https://doi.org/10.1016/j.actbio.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  108. Geng Z, Wang RF, Zhuo XL et al (2017) Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater Sci Eng C 71:852–861. https://doi.org/10.1016/j.msec.2016.10.079

    Article  CAS  Google Scholar 

  109. Qiao HX, Zou QS, Yuan CF et al (2018) Composite coatings of lanthanum-doped fluor-hydroxyapatite and a layer of strontium titanate nanotubes: fabrication, bio-corrosion resistance, cytocompatibility and osteogenic differentiation. Ceram Int 44(14):16632–16646. https://doi.org/10.1016/j.ceramint.2018.06.090

    Article  CAS  Google Scholar 

  110. Luo JJ, Tamaddon M, Yan CY et al (2020) Improving the fretting biocorrosion of Ti6Al4V alloy bone screw by decorating structure optimised TiO2 nanotubes layer. J Mater Sci Technol 49:47–55. https://doi.org/10.1016/j.jmst.2020.02.027

    Article  CAS  Google Scholar 

  111. Li JL, Wang S, Cao F et al (2019) Fabrication and characterization of nanopillar-like HA coating on porous Ti6Al4V scaffold by a combination of alkali–acid-heat and hydrothermal treatments. Acta Metall Sin Engl Lett 32(9):1075–1088. https://doi.org/10.1007/s40195-019-00920-4

    Article  CAS  Google Scholar 

  112. Yin S, Zhang WJ, Tang YM et al (2021) Preservation of alveolar ridge height through mechanical memory: a novel dental implant design. Bioact Mater 6(1):75–83. https://doi.org/10.1016/j.bioactmat.2020.07.015

    Article  CAS  PubMed  Google Scholar 

  113. Lian MF, Sun BB, Han Y et al (2021) A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials 274:120841. https://doi.org/10.1016/j.biomaterials.2021.120841

    Article  CAS  PubMed  Google Scholar 

  114. Hedayati R, Sadighi M, Mohammadi-Aghdam M et al (2016) Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: analytical solutions and computational models. Mater Sci Eng C Mater Biol Appl 60:163–183. https://doi.org/10.1016/j.msec.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  115. Al-Ketan O, Rowshan R, Abu Al-Rub RK (2018) Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit Manuf 19:167–183. https://doi.org/10.1016/j.addma.2017.12.006

    Article  Google Scholar 

  116. Yuan L, Ding SL, Wen C (2019) Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioact Mater 4(1):56–70. https://doi.org/10.1016/j.bioactmat.2018.12.003

    Article  PubMed  Google Scholar 

  117. Mirkhalaf M, Wang X, Entezari A et al (2021) Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regeneration. Appl Mater Today 25:101168. https://doi.org/10.1016/j.apmt.2021.101168

    Article  Google Scholar 

  118. Kelly CN, Francovich J, Julmi S et al (2019) Fatigue behavior of as-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering. Acta Biomater 94:610–626. https://doi.org/10.1016/j.actbio.2019.05.046

    Article  CAS  PubMed  Google Scholar 

  119. Zadpoor AA (2019) Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater 85:41–59. https://doi.org/10.1016/j.actbio.2018.12.038

    Article  CAS  PubMed  Google Scholar 

  120. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, UK. https://doi.org/10.1017/CBO9781139878326

    Book  Google Scholar 

  121. Ashby MF (2006) The properties of foams and lattices. Philos Trans Math Phys Eng Sci 364(1838):15–30. https://doi.org/10.1098/rsta.2005.1678

    Article  MathSciNet  CAS  ADS  Google Scholar 

  122. Fousova M, Vojtech D, Kubasek J et al (2017) Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process. J Mech Behav Biomed Mater 69:368–376. https://doi.org/10.1016/j.jmbbm.2017.01.043

    Article  CAS  PubMed  Google Scholar 

  123. Zhang S, Wei QS, Cheng LY et al (2014) Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Mater Des 63:185–193. https://doi.org/10.1016/j.matdes.2014.05.021

    Article  CAS  ADS  Google Scholar 

  124. Deshpande VS, Ashby MF, Fleck NA (2001) Foam topology: bending versus stretching dominated architectures. Acta Mater 49(6):1035–1040. https://doi.org/10.1016/S1359-6454(00)00379-7

    Article  CAS  ADS  Google Scholar 

  125. Yang L, Han CJ, Wu HZ et al (2020) Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion. J Mech Behav Biomed Mater 109:103843. https://doi.org/10.1016/j.jmbbm.2020.103843

    Article  CAS  PubMed  Google Scholar 

  126. Ran QC, Yang WH, Hu Y et al (2018) Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J Mech Behav Biomed Mater 84:1–11. https://doi.org/10.1016/j.jmbbm.2018.04.010

    Article  CAS  PubMed  Google Scholar 

  127. Taniguchi N, Fujibayashi S, Takemoto M et al (2016) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl 59:690–701. https://doi.org/10.1016/j.msec.2015.10.069

    Article  CAS  PubMed  Google Scholar 

  128. Davoodi E, Montazerian H, Esmaeilizadeh R et al (2021) Additively manufactured gradient porous Ti-6Al-4V hip replacement implants embedded with cell-laden gelatin methacryloyl hydrogels. ACS Appl Mater Interfaces 13(19):22110–22123. https://doi.org/10.1021/acsami.0c20751

    Article  CAS  PubMed  Google Scholar 

  129. Poumarat G, Squire P (1993) Comparison of mechanical properties of human, bovine bone and a new processed bone xenograft. Biomaterials 14(5):337–340. https://doi.org/10.1016/0142-9612(93)90051-3

    Article  CAS  PubMed  Google Scholar 

  130. Zysset PK, Guo XE, Hoffler CE et al (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32(10):1005–1012. https://doi.org/10.1016/s0021-9290(99)00111-6

    Article  CAS  PubMed  Google Scholar 

  131. Goldstein SA, Wilson DL, Sonstegard DA et al (1983) The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomech 16(12):965–969. https://doi.org/10.1016/0021-9290(83)90097-0

    Article  CAS  PubMed  Google Scholar 

  132. Frost HM (2004) A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthod 74(1):3–15

    PubMed  Google Scholar 

  133. Hara D, Nakashima Y, Sato T et al (2016) Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique. Mater Sci Eng C Mater Biol Appl 59:1047–1052. https://doi.org/10.1016/j.msec.2015.11.025

    Article  CAS  PubMed  Google Scholar 

  134. Zhao Z, Li JC, Wei Y et al (2022) Design and properties of graded polyamide12/hydroxyapatite scaffolds based on primitive lattices using selective laser sintering. J Mech Behav Biomed Mater 126:105052. https://doi.org/10.1016/j.jmbbm.2021.105052

    Article  CAS  PubMed  Google Scholar 

  135. Cheng A, Humayun A, Cohen DJ et al (2014) Additively manufactured 3D porous Ti-6Al-4V constructs mimic trabecular bone structure and regulate osteoblast proliferation, differentiation and local factor production in a porosity and surface roughness dependent manner. Biofabrication 6(4):045007. https://doi.org/10.1088/1758-5082/6/4/045007

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  136. Chen ZY, Yan XC, Yin S et al (2020) Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl 106:110289. https://doi.org/10.1016/j.msec.2019.110289

    Article  CAS  PubMed  Google Scholar 

  137. Shah FA, Snis A, Matic A et al (2016) 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta Biomater 30:357–367. https://doi.org/10.1016/j.actbio.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  138. Bobbert FSL, Lietaert K, Eftekhari AA et al (2017) Additively manufactured metallic porous biomaterials based on minimal surfaces: a unique combination of topological, mechanical, and mass transport properties. Acta Biomater 53:572–584. https://doi.org/10.1016/j.actbio.2017.02.024

    Article  CAS  PubMed  Google Scholar 

  139. Hulbert SF, Young FA, Mathews RS et al (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4(3):433–456. https://doi.org/10.1002/jbm.820040309

    Article  CAS  PubMed  Google Scholar 

  140. Osorio M, Fernandez-Morales P, Ganan P et al (2019) Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: effect of processing methods, pore size, and surface area. J Biomed Mater Res A 107(2):348–359. https://doi.org/10.1002/jbm.a.36532

    Article  CAS  PubMed  Google Scholar 

  141. Fukuda A, Takemoto M, Saito T et al (2011) Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater 7(5):2327–2336. https://doi.org/10.1016/j.actbio.2011.01.037

    Article  CAS  PubMed  Google Scholar 

  142. Yang E, Leary M, Lozanovski B et al (2019) Effect of geometry on the mechanical properties of Ti-6Al-4V Gyroid structures fabricated via SLM: a numerical study. Mater Des 184:108165. https://doi.org/10.1016/j.matdes.2019.108165

    Article  CAS  Google Scholar 

  143. Abu Al-Rub RK, Lee DW, Khan KA et al (2020) Effective anisotropic elastic and plastic yield properties of periodic foams derived from triply periodic Schoen’s I-WP minimal surface. J Eng Mech 146(5):04020030. https://doi.org/10.1061/(asce)em.1943-7889.0001759

    Article  Google Scholar 

  144. Al-Ketan O, Lee DW, Rowshan R et al (2020) Functionally graded and multi-morphology sheet TPMS lattices: design, manufacturing, and mechanical properties. J Mech Behav Biomed Mater 102:103520. https://doi.org/10.1016/j.jmbbm.2019.103520

    Article  PubMed  Google Scholar 

  145. Yan CZ, Hao L, Hussein A et al (2014) Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater Des 55:533–541. https://doi.org/10.1016/j.matdes.2013.10.027

    Article  CAS  Google Scholar 

  146. Barba D, Alabort E, Reed RC (2019) Synthetic bone: design by additive manufacturing. Acta Biomater 97:637–656. https://doi.org/10.1016/j.actbio.2019.07.049

    Article  CAS  PubMed  Google Scholar 

  147. Vijayavenkataraman S, Kuan LY, Lu WF (2020) 3D-printed ceramic triply periodic minimal surface structures for design of functionally graded bone implants. Mater Des 191:108602. https://doi.org/10.1016/j.matdes.2020.108602

    Article  CAS  Google Scholar 

  148. Cai ZZ, Liu ZH, Hu XD et al (2019) The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface (TPMS) bioscaffold. Bio-Des Manuf 2(4):242–255. https://doi.org/10.1007/s42242-019-00054-7

    Article  Google Scholar 

  149. Hailu YM, Nazir A, Hsu CP et al (2022) Investigation of torsional properties of surface- and strut-based lattice structures manufactured using multiJet fusion technology. Int J Adv Manuf Technol 119(9–10):5929–5945. https://doi.org/10.1007/s00170-022-08681-8

    Article  Google Scholar 

  150. Novak N, Al-Ketan O, Krstulovic-Opara L et al (2022) Bending behavior of triply periodic minimal surface foam-filled tubes. Mech Adv Mater Struct 30(15):3061–3074. https://doi.org/10.1080/15376494.2022.2068207

    Article  CAS  Google Scholar 

  151. Peng CX, Fox K, Qian M et al (2021) 3D printed sandwich beams with bioinspired cores: mechanical performance and modelling. Thin Wall Struct 161:107471. https://doi.org/10.1016/j.tws.2021.107471

    Article  Google Scholar 

  152. Yang L, Li Y, Chen Y et al (2022) Topologically optimized lattice structures with superior fatigue performance. Int J Fatigue 165:107188. https://doi.org/10.1016/j.ijfatigue.2022.107188

    Article  Google Scholar 

  153. Yang L, Yan CZ, Cao WC et al (2019) Compression–compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater 181:49–66. https://doi.org/10.1016/j.actamat.2019.09.042

    Article  CAS  ADS  Google Scholar 

  154. Vu AA, Burke DA, Bandyopadhyay A et al (2021) Effects of surface area and topography on 3D printed tricalcium phosphate scaffolds for bone grafting applications. Addit Manuf 39:101870. https://doi.org/10.1016/j.addma.2021.101870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hauge EM, Qvesel D, Eriksen EF et al (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16(9):1575–1582. https://doi.org/10.1359/jbmr.2001.16.9.1575

    Article  CAS  PubMed  Google Scholar 

  156. Gamsjäger E, Bidan CM, Fischer FD et al (2013) Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomater 9(3):5531–5543. https://doi.org/10.1016/j.actbio.2012.10.020

    Article  PubMed  Google Scholar 

  157. Dunlop JWC, Fischer FD, Gamsjäger E et al (2010) A theoretical model for tissue growth in confined geometries. J Mech Phys Solids 58(8):1073–1087. https://doi.org/10.1016/j.jmps.2010.04.008

    Article  MathSciNet  CAS  ADS  Google Scholar 

  158. Zhang Q, Ma LM, Ji XF et al (2022) High-strength hydroxyapatite scaffolds with minimal surface macrostructures for load-bearing bone regeneration. Adv Funct Mater 32(33):2204182. https://doi.org/10.1002/adfm.202204182

    Article  CAS  Google Scholar 

  159. Fantini M, Curto M, De Crescenzio F (2016) A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices. Virt Phys Prototy 11(2):77–90. https://doi.org/10.1080/17452759.2016.1172301

    Article  Google Scholar 

  160. Fantini M, Curto M (2017) Interactive design and manufacturing of a Voronoi-based biomimetic bone scaffold for morphological characterization. Int J Interact Des Manuf 12(2):585–596. https://doi.org/10.1007/s12008-017-0416-x

    Article  Google Scholar 

  161. Zhu L, Liang HX, Lv F et al (2021) Design and compressive fatigue properties of irregular porous scaffolds for orthopedics fabricated using selective laser melting. ACS Biomater Sci Eng 7(4):1663–1672. https://doi.org/10.1021/acsbiomaterials.0c01392

    Article  CAS  PubMed  Google Scholar 

  162. Wang GJ, Shen LD, Zhao JF et al (2018) Design and compressive behavior of controllable irregular porous scaffolds: based on Voronoi-tessellation and for additive manufacturing. ACS Biomater Sci Eng 4(2):719–727. https://doi.org/10.1021/acsbiomaterials.7b00916

    Article  CAS  PubMed  Google Scholar 

  163. Chen H, Liu Y, Wang CY et al (2021) Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med 130:104241. https://doi.org/10.1016/j.compbiomed.2021.104241

    Article  CAS  PubMed  Google Scholar 

  164. Entezari A, Roohani I, Li GL et al (2019) Architectural design of 3D printed scaffolds controls the volume and functionality of newly formed bone. Adv Healthc Mater 8(1):e1801353. https://doi.org/10.1002/adhm.201801353

    Article  CAS  PubMed  Google Scholar 

  165. Wang C, Xu DL, Lin L et al (2021) Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater Sci Eng C Mater Biol Appl 131:112499. https://doi.org/10.1016/j.msec.2021.112499

    Article  CAS  PubMed  Google Scholar 

  166. Ragone V, Canciani E, Arosio M et al (2020) In vivo osseointegration of a randomized trabecular titanium structure obtained by an additive manufacturing technique. J Mater Sci Mater Med 31(2):17. https://doi.org/10.1007/s10856-019-6357-0

    Article  CAS  PubMed  Google Scholar 

  167. Wu WW, Hu WX, Qian GA et al (2019) Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater Des 180:107950. https://doi.org/10.1016/j.matdes.2019.107950

    Article  Google Scholar 

  168. Schwerdtfeger J, Schury F, Stingl M et al (2012) Mechanical characterisation of a periodic auxetic structure produced by SEBM. Phys Status Solidi B Basic Res 249(7):1347–1352. https://doi.org/10.1002/pssb.201084211

    Article  CAS  ADS  Google Scholar 

  169. Gao Q, Tan CA, Hulbert G et al (2020) Geometrically nonlinear mechanical properties of auxetic double-V microstructures with negative Poisson’s ratio. Eur J Mech A Solids 80:103933. https://doi.org/10.1016/j.euromechsol.2019.103933

    Article  MathSciNet  Google Scholar 

  170. Chen JP, Chen WS, Hao H et al (2020) Mechanical behaviors of 3D re-entrant honeycomb polyamide structure under compression. Mater Today Commun 24:101062. https://doi.org/10.1016/j.mtcomm.2020.101062

    Article  CAS  Google Scholar 

  171. Wang ZW, Luan CC, Liao GX et al (2020) Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications. Adv Eng Mater 22(10):2000312. https://doi.org/10.1002/adem.202000312

    Article  Google Scholar 

  172. Yao Y, Yuan H, Huang HW et al (2021) Biomechanical design and analysis of auxetic pedicle screw to resist loosening. Comput Biol Med 133:104386. https://doi.org/10.1016/j.compbiomed.2021.104386

    Article  PubMed  Google Scholar 

  173. Kolken HMA, Janbaz S, Leeflang SMA et al (2018) Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials. Mater Horiz 5(1):28–35. https://doi.org/10.1039/c7mh00699c

    Article  CAS  Google Scholar 

  174. Frenzel T, Kadic M, Wegener M (2017) Three-dimensional mechanical metamaterials with a twist. Science 358(6366):1072–1074. https://doi.org/10.1126/science.aao4640

    Article  CAS  PubMed  ADS  Google Scholar 

  175. Wang YL, Zhao WZ, Zhou G et al (2018) Suspension mechanical performance and vehicle ride comfort applying a novel jounce bumper based on negative Poisson’s ratio structure. Adv Eng Softw 122:1–12. https://doi.org/10.1016/j.advengsoft.2018.04.001

    Article  CAS  Google Scholar 

  176. Yang L, Cormier D, West H et al (2012) Non-stochastic Ti–6Al–4V foam structures with negative Poisson’s ratio. Mater Sci Eng A 558:579–585. https://doi.org/10.1016/j.msea.2012.08.053

    Article  CAS  Google Scholar 

  177. Bezazi A, Boukharouba W, Scarpa F (2009) Mechanical properties of auxetic carbon/epoxy composites: static and cyclic fatigue behaviour. Phys Status Solidi B Basic Res 246(9):2102–2110. https://doi.org/10.1002/pssb.200982042

    Article  CAS  ADS  Google Scholar 

  178. Yang S, Chalivendra VB, Kim YK (2017) Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites. Compos Struct 168:120–129. https://doi.org/10.1016/j.compstruct.2017.02.034

    Article  Google Scholar 

  179. Jiang H, Zhang ZN, Chen YY (2020) 3D printed tubular lattice metamaterials with engineered mechanical performance. Appl Phys Lett 117(1):011906. https://doi.org/10.1063/5.0014932

    Article  CAS  ADS  Google Scholar 

  180. Jiang H, Ziegler H, Zhang ZN et al (2022) Bending behavior of 3D printed mechanically robust tubular lattice metamaterials. Addit Manuf 50:102565. https://doi.org/10.1016/j.addma.2021.102565

    Article  Google Scholar 

  181. Yang L, Harrysson O, West H et al (2012) Compressive properties of Ti–6Al–4V auxetic mesh structures made by electron beam melting. Acta Mater 60(8):3370–3379. https://doi.org/10.1016/j.actamat.2012.03.015

    Article  CAS  ADS  Google Scholar 

  182. Gao Q, Zhao X, Wang CZ et al (2018) Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading. Mater Des 143:120–130. https://doi.org/10.1016/j.matdes.2018.01.063

    Article  Google Scholar 

  183. Yang H, Wang B, Ma L (2019) Mechanical properties of 3D double-U auxetic structures. Int J Solid Struct 180–181:13–29. https://doi.org/10.1016/j.ijsolstr.2019.07.007

    Article  Google Scholar 

  184. Guo MF, Yang H, Ma L (2020) Design and analysis of 2D double-U auxetic honeycombs. Thin Wall Struct 155:106915. https://doi.org/10.1016/j.tws.2020.106915

    Article  Google Scholar 

  185. Meena K, Singamneni S (2019) A new auxetic structure with significantly reduced stress concentration effects. Mater Des 173:107779. https://doi.org/10.1016/j.matdes.2019.107779

    Article  Google Scholar 

  186. Warmuth F, Osmanlic F, Adler L et al (2017) Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting. Smart Mater Struct 26(2):25013. https://doi.org/10.1088/1361-665x/26/2/025013

    Article  CAS  Google Scholar 

  187. Ma C, Lei HS, Liang J et al (2018) Macroscopic mechanical response of chiral-type cylindrical metastructures under axial compression loading. Mater Des 158:198–212. https://doi.org/10.1016/j.matdes.2018.08.022

    Article  Google Scholar 

  188. Huiskes R, Weinans H, Grootenboer HJ et al (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20(11–12):1135–1150. https://doi.org/10.1016/0021-9290(87)90030-3

    Article  CAS  PubMed  Google Scholar 

  189. Zhu JJ, Marshall B, Tang X et al (2022) ACL graft with extra-cortical fixation rotates around the femoral tunnel aperture during knee flexion. Knee Surg Sports Traumatol Arthrosc 30(1):116–123. https://doi.org/10.1007/s00167-021-06703-8

    Article  PubMed  Google Scholar 

  190. Wang LZ, Huang HW, Yuan H et al (2023) In vitro fatigue behavior and in vivo osseointegration of the auxetic porous bone screw. Acta Biomater 170:185–201. https://doi.org/10.1016/j.actbio.2023.08.040

    Article  CAS  PubMed  Google Scholar 

  191. Lee JJ, Ng HY, Lin YH et al (2022) The synergistic effect of cyclic tensile force and periodontal ligament cell-laden calcium silicate/gelatin methacrylate auxetic hydrogel scaffolds for bone regeneration. Cells 11(13):2069. https://doi.org/10.3390/cells11132069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Li ZH, Müller R, Ruffoni D (2018) Bone remodeling and mechanobiology around implants: insights from small animal imaging. J Orthop Res 36(2):584–593. https://doi.org/10.1002/jor.23758

    Article  PubMed  Google Scholar 

  193. Hazlehurst KB, Wang CJ, Stanford M (2014) An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Mater Des 60:177–183. https://doi.org/10.1016/j.matdes.2014.03.068

    Article  CAS  Google Scholar 

  194. Hailu YM, Nazir A, Lin SC et al (2021) The effect of functional gradient material distribution and patterning on torsional properties of lattice structures manufactured using multiJet fusion technology. Materials 14(21):6521. https://doi.org/10.3390/ma14216521

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  195. Zhang JF, Chen XH, Sun YX et al (2022) Design of a biomimetic graded TPMS scaffold with quantitatively adjustable pore size. Mater Des 218:110665. https://doi.org/10.1016/j.matdes.2022.110665

    Article  CAS  Google Scholar 

  196. Tan CL, Deng C, Li S et al (2022) Mechanical property and biological behaviour of additive manufactured TiNi functionally graded lattice structure. Int J Extreme Manuf 4(4):45003. https://doi.org/10.1088/2631-7990/ac94fa

    Article  Google Scholar 

  197. Zhao S, Li SJ, Wang SG et al (2018) Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting. Acta Mater 150:1–15. https://doi.org/10.1016/j.actamat.2018.02.060

    Article  CAS  ADS  Google Scholar 

  198. Liu Y, Zhang AB, Wang CY et al (2020) Biomechanical comparison between metal block and cement-screw techniques for the treatment of tibial bone defects in total knee arthroplasty based on finite element analysis. Comput Biol Med 125:104006. https://doi.org/10.1016/j.compbiomed.2020.104006

    Article  CAS  PubMed  Google Scholar 

  199. Song CJ, Chang HR, Zhang D et al (2021) Biomechanical evaluation of oblique lumbar interbody fusion with various fixation options: a finite element analysis. Orthop Surg 13(2):517–529. https://doi.org/10.1111/os.12877

    Article  PubMed  PubMed Central  Google Scholar 

  200. Zeng W, Liu Y, Hou X (2020) Biomechanical evaluation of internal fixation implants for femoral neck fractures: a comparative finite element analysis. Comput Meth Prog Bio 196:105714. https://doi.org/10.1016/j.cmpb.2020.105714

    Article  Google Scholar 

  201. Lin HM, Liu CL, Pan YN et al (2014) Biomechanical analysis and design of a dynamic spinal fixator using topology optimization: a finite element analysis. Med Biol Eng Comput 52(5):499–508. https://doi.org/10.1007/s11517-014-1154-x

    Article  PubMed  Google Scholar 

  202. Fu J, Li H, Song X et al (2022) Multi-scale defects in powder-based additively manufactured metals and alloys. J Mater Sci Technol 122:165–199. https://doi.org/10.1016/j.jmst.2022.02.015

    Article  CAS  Google Scholar 

  203. Wally ZJ, Haque AM, Feteira A et al (2019) Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications. J Mech Behav Biomed Mater 90:20–29. https://doi.org/10.1016/j.jmbbm.2018.08.047

    Article  CAS  PubMed  Google Scholar 

  204. Yan CZ, Hao L, Hussein A et al (2015) Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater 51:61–73. https://doi.org/10.1016/j.jmbbm.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  205. Shang C, Wang CY, Li CF et al (2020) Eliminating the crack of laser 3D printed functionally graded material from TA15 to Inconel718 by base preheating. Opt Laser Technol 126:106100. https://doi.org/10.1016/j.optlastec.2020.106100

    Article  CAS  Google Scholar 

  206. Ali H, Ma L, Ghadbeigi H et al (2017) In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of selective laser melted Ti6Al4V. Mater Sci Eng A 695:211–220. https://doi.org/10.1016/j.msea.2017.04.033

    Article  CAS  Google Scholar 

  207. Polozov I, Sufiiarov V, Kantyukov A et al (2020) Microstructure, densification, and mechanical properties of titanium intermetallic alloy manufactured by laser powder bed fusion additive manufacturing with high-temperature preheating using gas atomized and mechanically alloyed plasma spheroidized powders. Addit Manuf 34:101374. https://doi.org/10.1016/j.addma.2020.101374

    Article  CAS  Google Scholar 

  208. Saedi S, Shayesteh Moghaddam N, Amerinatanzi A et al (2018) On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi. Acta Mater 144:552–560. https://doi.org/10.1016/j.actamat.2017.10.072

    Article  CAS  ADS  Google Scholar 

  209. Huang QL, Liu XJ, Yang X et al (2015) Specific heat treatment of selective laser melted Ti-6Al-4V for biomedical applications. Front Mater Sci 9(4):373–381. https://doi.org/10.1007/s11706-015-0315-7

    Article  Google Scholar 

  210. Yuan W, Hou WT, Li SJ et al (2018) Heat treatment enhancing the compressive fatigue properties of open-cellular Ti-6Al-4V alloy prototypes fabricated by electron beam melting. J Mater Sci Technol 34(7):1127–1131. https://doi.org/10.1016/j.jmst.2017.12.003

    Article  Google Scholar 

  211. Jam A, du Plessis A, Lora C et al (2022) Manufacturability of lattice structures fabricated by laser powder bed fusion: a novel biomedical application of the beta Ti-21S alloy. Addit Manuf 50:102556. https://doi.org/10.1016/j.addma.2021.102556

    Article  CAS  Google Scholar 

  212. Banerjee D, Williams JC (2013) Perspectives on titanium science and technology. Acta Mater 61(3):844–879. https://doi.org/10.1016/j.actamat.2012.10.043

    Article  CAS  ADS  Google Scholar 

  213. Liu YJ, Li SJ, Wang HL et al (2016) Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater 113:56–67. https://doi.org/10.1016/j.actamat.2016.04.029

    Article  CAS  ADS  Google Scholar 

  214. Zhou YL, Niinomi M (2009) Ti–25Ta alloy with the best mechanical compatibility in Ti–Ta alloys for biomedical applications. Mater Sci Eng C 29(3):1061–1065. https://doi.org/10.1016/j.msec.2008.09.012

    Article  CAS  Google Scholar 

  215. Semlitsch M, Weber H, Streicher RM et al (1991) Joint prostheses components of warm-forged and surface treated Ti-6Al-7Nb alloy. Biomed Tech Biomed Eng 36(5):112–119. https://doi.org/10.1515/bmte.1991.36.5.112

    Article  CAS  Google Scholar 

  216. Vasilescu C, Drob SI, Osiceanu P et al (2015) Surface analysis, microstructural, mechanical and electrochemical properties of new Ti-15Ta-5Zr alloy. Metal Mater Int 21(2):242–250. https://doi.org/10.1007/s12540-015-4074-x

    Article  CAS  Google Scholar 

  217. Popa M, Vasilescu E, Drob P et al (2012) Microstructure, mechanical, and anticorrosive properties of a new Ti-20Nb-10Zr-5Ta alloy based on nontoxic and nonallergenic elements. Metal Mater Int 18(4):639–645. https://doi.org/10.1007/s12540-012-4026-7

    Article  CAS  Google Scholar 

  218. Luo JP, Sun JF, Huang YJ et al (2019) Low-modulus biomedical Ti-30Nb-5Ta-3Zr additively manufactured by selective laser melting and its biocompatibility. Mater Sci Eng C Mater Biol Appl 97:275–284. https://doi.org/10.1016/j.msec.2018.11.077

    Article  CAS  PubMed  Google Scholar 

  219. Pellizzari M, Jam A, Tschon M et al (2020) A 3D-printed ultra-low Young’s modulus β-Ti alloy for biomedical applications. Materials 13(12):2792. https://doi.org/10.3390/ma13122792

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  220. Windhagen H, Radtke K, Weizbauer A et al (2013) Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online 12:62. https://doi.org/10.1186/1475-925x-12-62

    Article  PubMed  PubMed Central  Google Scholar 

  221. Sturznickel J, Delsmann MM, Jungesblut OD et al (2021) Safety and performance of biodegradable magnesium-based implants in children and adolescents. Injury 52(8):2265–2271. https://doi.org/10.1016/j.injury.2021.03.037

    Article  PubMed  Google Scholar 

  222. Wong TT, Denning J, Moy MP et al (2021) MRI following medial patellofemoral ligament reconstruction: assessment of imaging features found with post-operative pain, arthritis, and graft failure. Skeletal Radiol 50(5):981–991. https://doi.org/10.1007/s00256-020-03655-x

    Article  PubMed  Google Scholar 

  223. Zhang XT, Mao J, Zhou YF et al (2020) Mechanical properties and osteoblast proliferation of complex porous dental implants filled with magnesium alloy based on 3D printing. J Biomater Appl 35(10):1275–1283. https://doi.org/10.1177/0885328220957902

    Article  CAS  PubMed  Google Scholar 

  224. Liu WC, Chang CH, Chen CH et al (2022) 3D-printed double-helical biodegradable iron suture anchor: a rabbit rotator cuff tear model. Materials 15(8):2801. https://doi.org/10.3390/ma15082801

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  225. Qu XH, Yang HT, Jia B et al (2021) Zinc alloy-based bone internal fixation screw with antibacterial and anti-osteolytic properties. Bioact Mater 6(12):4607–4624. https://doi.org/10.1016/j.bioactmat.2021.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Tai CC, Lo HL, Liaw CK et al (2021) Biocompatibility and biological performance evaluation of additive-manufactured bioabsorbable iron-based porous suture anchor in a rabbit model. Int J Mol Sci 22(14):7368. https://doi.org/10.3390/ijms22147368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Prasad K, Bazaka O, Chua M et al (2017) Metallic biomaterials: current challenges and opportunities. Materials 10(8):884. https://doi.org/10.3390/ma10080884

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  228. Yang H, Jia B, Zhang Z et al (2020) Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat Commun 11(1):401. https://doi.org/10.1038/s41467-019-14153-7

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  229. Montani M, Demir AG, Mostaed E et al (2017) Processability of pure Zn and pure Fe by SLM for biodegradable metallic implant manufacturing. Rapid Prototyping J 23(3):514–523. https://doi.org/10.1108/rpj-08-2015-0100

    Article  Google Scholar 

  230. Wen P, Voshage M, Jauer L et al (2018) Laser additive manufacturing of Zn metal parts for biodegradable applications: processing, formation quality and mechanical properties. Mater Des 155:36–45. https://doi.org/10.1016/j.matdes.2018.05.057

    Article  CAS  Google Scholar 

  231. Delsmann MM, Sturznickel J, Kertai M et al (2022) Radiolucent zones of biodegradable magnesium-based screws in children and adolescents—a radiographic analysis. Arch Orthop Trauma Surg 143(5):2297–2305. https://doi.org/10.1007/s00402-022-04418-0

    Article  PubMed  Google Scholar 

  232. Wang JL, Xu JK, Hopkins C et al (2020) Biodegradable magnesium-based implants in orthopedics—a general review and perspectives. Adv Sci 7(8):1902443. https://doi.org/10.1002/advs.201902443

    Article  CAS  Google Scholar 

  233. Herber V, Labmayr V, Sommer NG et al (2022) Can hardware removal be avoided using bioresorbable Mg-Zn-Ca screws after medial malleolar fracture fixation? Mid-term results of a first-in-human study. Injury 53(3):1283–1288. https://doi.org/10.1016/j.injury.2021.10.025

    Article  PubMed  Google Scholar 

  234. Luo Y, Zhang C, Wang J et al (2021) Clinical translation and challenges of biodegradable magnesium-based interference screws in ACL reconstruction. Bioact Mater 6(10):3231–3243. https://doi.org/10.1016/j.bioactmat.2021.02.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Karunakaran R, Ortgies S, Tamayol A et al (2020) Additive manufacturing of magnesium alloys. Bioact Mater 5(1):44–54. https://doi.org/10.1016/j.bioactmat.2019.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  236. Li Y, Zhou J, Pavanram P et al (2018) Additively manufactured biodegradable porous magnesium. Acta Biomater 67:378–392. https://doi.org/10.1016/j.actbio.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  237. Liu Y, Yang YQ, Mai SZ et al (2015) Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater Des 87:797–806. https://doi.org/10.1016/j.matdes.2015.08.086

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82272504 and 82072456), the National Key R&D Program of China (No. 2018YFB1105100), the Department of Science and Technology of Jilin Province, China (Nos. 20200404202YY, 20200403086SF, 20210101321JC, 20210204104YY, 20200201453JC, 20220204119YY, 202201ZYTS131, 202201ZYTS129, 20220401084YY, 202201ZYTS505, and YDZJ202301ZYTS076], the Department of Finance of Jilin Province, China (No. 2020SCZT037), the Jilin Provincial Development and Reform Commission, China (Nos. 2018C010 and 2022C043-5], the Interdisciplinary Integration and Cultivation Project of Jilin University (No. JLUXKJC2020307), and the Central University Basic Scientific Research Fund (No. 2023-JCXK-04].

Author information

Authors and Affiliations

Authors

Contributions

WBY investigated and summarized the literature, drew the graphs, and wrote the original draft. HC conducted deep review and editing. HTB and YFS conducted deep review. ABZ, YL, and YCS gave some advice. QH and JCW helped revise the paper, supervised the work, and applied for funds. All authors have read and approved this manuscript for publication.

Corresponding authors

Correspondence to Qing Han or Jincheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Chen, H., Bai, H. et al. Additive manufactured osseointegrated screws with hierarchical design. Bio-des. Manuf. 7, 206–235 (2024). https://doi.org/10.1007/s42242-024-00269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-024-00269-3

Keywords

Navigation