Skip to main content
Log in

Enhancement of intranasal mucosal immunization of mucosal vaccines by ultrasonic treatment

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

The pathogens of most infectious diseases invade the host through mucosal sites, and immunization with mucosal vaccines is the best means of combating these infectious diseases. Oral delivery and nasal delivery are the most common methods of mucosal vaccination. However, the delivery process is inefficient, and mucosal vaccination is ineffective because the vaccine formulation is easily and rapidly removed and has difficulty in crossing the mucosal surface. In this paper, we investigated whether the mucosal immune response could be enhanced by ultrasound facilitation of nasal mucosal delivery of vaccine preparations. For this purpose, we used manganese dioxide (MnO2) as the vaccine carrier/adjuvant, coated with chitosan oligosaccharide (COS) to enhance mucosal adsorption, and further physically adsorbed model antigen ovalbumin (OVA) to construct a nanoparticulate vaccine formulation MnO2@COS@OVA. Ultrasound treatment was found to promote antigen delivery and recruitment of dendritic cells (DCs) and macrophages as well as T-cell infiltration in nasal mucosal tissues through nasal mucosal immunization studies. With ultrasound assistance, MnO2@COS@OVA particles promoted the maturation of DCs in vitro and in vivo and promoted the production of effector memory T cells in vivo and cytokine secretion by splenocytes in vitro. In particular, ultrasound treatment significantly increased the levels of secretory IgA antibodies in the nasal mucosa and genital tract mucosa of experimental mice. In addition, the experimental data showed that the MnO2@COS@OVA particles had good biocompatibility and caused no significant damage to the nasal mucosal and vital organ tissue. These data suggest that ultrasound treatment can promote the induction of efficient immune responses to mucosal vaccines and provide new ideas for the opening and clinical translation of mucosal vaccines.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Neutra MR, Pringault E, Kraehenbuhl JP (1996) Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol 14:275–300. https://doi.org/10.1146/annurev.immunol.14.1.275

    Article  Google Scholar 

  2. Chase C, Kaushik RS (2019) Mucosal immune system of cattle all immune responses begin here. Vet Clin N Am Food A 35(3):431–451. https://doi.org/10.1016/j.cvfa.2019.08.006

    Article  Google Scholar 

  3. Marasini N, Skwarczynski M, Toth I (2017) Intranasal delivery of nanoparticle-based vaccines. Ther Deliv 8(3):151–167. https://doi.org/10.4155/tde-2016-0068

    Article  Google Scholar 

  4. Feng F, Wen Z, Chen J et al (2022) Strategies to develop a mucosa-targeting vaccine against emerging infectious diseases. Viruses 14(3):520. https://doi.org/10.3390/v14030520

    Article  Google Scholar 

  5. Wang M, Zhang Y, Pan L (2014) Advance in attenuated salmonella vector on intestinal mucosal immunity. Chin Vet Sci 44(1):104–110

    Google Scholar 

  6. Yu Q, Zhu L, Kang H et al (2013) Mucosal lactobacillus vectored vaccines. Hum Vaccin Immunother 9(4):805–807. https://doi.org/10.4161/hv.23302

    Article  Google Scholar 

  7. Jiang PL, Lin HJ, Wang HW et al (2015) Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater 11:356–367. https://doi.org/10.1016/j.actbio.2014.09.019

    Article  Google Scholar 

  8. Huang CH, Huang CY, Ho HM et al (2020) Nanoemulsion adjuvantation strategy of tumor-associated antigen therapy rephrases mucosal and immunotherapeutic signatures following intranasal vaccination. J Immunother Cancer 8(2):e001022. https://doi.org/10.1136/jitc-2020-001022

  9. Clow F, Peterken K, Pearson V et al (2020) Pilvax, a novel lactococcus lactis-based mucosal vaccine platform, stimulates systemic and mucosal immune responses to staphylococcus aureus. Immunol Cell Biol 98(5):369–381. https://doi.org/10.1111/imcb.12325

    Article  Google Scholar 

  10. Marasini N, Skwarczynski M, Toth I (2014) Oral delivery of nanoparticle-based vaccines. Expert Rev Vaccines 13(11):1361–1376. https://doi.org/10.1586/14760584.2014.936852

    Article  Google Scholar 

  11. Csaba N, Garcia-Fuentes M, Alonso MJ (2009) Nanoparticles for nasal vaccination. Adv Drug Deliv Rev 61(2):140–157. https://doi.org/10.1016/j.addr.2008.09.005

    Article  Google Scholar 

  12. Zaman M, Chandrudu S, Toth I (2013) Strategies for intranasal delivery of vaccines. Drug Deliv Transl Res 3(1):100–109. https://doi.org/10.1007/s13346-012-0085-z

    Article  Google Scholar 

  13. Ter Haar G (1999) Therapeutic ultrasound. Eur J Ultrasound 9(1):3–9. https://doi.org/10.1016/s0929-8266(99)00013-0

    Article  Google Scholar 

  14. Ferrara K, Pollard R, Borden M (2007) Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng 9:415–447. https://doi.org/10.1146/annurev.bioeng.8.061505.095852

    Article  Google Scholar 

  15. Mitragotri S (2005) Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat Rev Drug Discov 4(3):255–260. https://doi.org/10.1038/nrd1662

    Article  Google Scholar 

  16. Zhu WJ, Chen Q, Jin QT et al (2021) Sonodynamic therapy with immune modulatable two-dimensional coordination nanosheets for enhanced anti-tumor immunotherapy. Nano Res 14(1):212–221. https://doi.org/10.1007/s12274-020-3070-8

    Article  Google Scholar 

  17. Garcia-Gradilla V, Sattayasamitsathit S, Soto F et al (2014) Ultrasound-propelled nanoporous gold wire for efficient drug loading and release. Small 10(20):4154–4159. https://doi.org/10.1002/smll.201401013

    Article  Google Scholar 

  18. Yudina A, Lepetit-Coiffe M, Moonen CT (2011) Evaluation of the temporal window for drug delivery following ultrasound-mediated membrane permeability enhancement. Mol Imaging Biol 13(2):239–249. https://doi.org/10.1007/s11307-010-0346-5

    Article  Google Scholar 

  19. Wang JJ, Liu XY, Qi YF et al (2021) Ultrasound-propelled nanomotors for improving antigens cross-presentation and cellular immunity. Chem Eng J 416:129091. https://doi.org/10.1016/j.cej.2021.129091

    Article  Google Scholar 

  20. Labarca CC, Makhutu M, Lumsdon AE et al (2015) The adjuvant effect of low frequency ultrasound when applied with an inactivated Aeromonas salmonicida vaccine to rainbow trout (Oncorhynchus mykiss). Vaccine 33(11):1369–1374. https://doi.org/10.1016/j.vaccine.2015.01.027

    Article  Google Scholar 

  21. Li XF, Khorsandi S, Wang YF et al (2022) Cancer immunotherapy based on image-guided sting activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat Nanotechnol 17(8):891–899. https://doi.org/10.1038/s41565-022-01134-z

    Article  Google Scholar 

  22. Wang S, Hu Z, Wang XL et al (2014) 5-aminolevulinic acid-mediated sonodynamic therapy reverses macrophage and dendritic cell passivity in murine melanoma xenografts. Ultrasound Med Biol 40(9):2125–2133. https://doi.org/10.1016/j.ultrasmedbio.2014.05.007

    Article  Google Scholar 

  23. Tezel A, Paliwal S, Shen ZC et al (2005) Low-frequency ultrasound as a transcutaneous immunization adjuvant. Vaccine 23(29):3800–3807. https://doi.org/10.1016/j.vaccine.2005.02.027

    Article  Google Scholar 

  24. Yang GB, Xu LG, Chao Y et al (2017) Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat Commun 8:902. https://doi.org/10.1038/s41467-017-01050-0

    Article  Google Scholar 

  25. Zhang R, Wang CG, Guan YK et al (2021) Manganese salts function as potent adjuvants. Cell Mol Immunol 18(5):1222–1234. https://doi.org/10.1038/s41423-021-00669-w

    Article  Google Scholar 

  26. Pawar D, Goyal AK, Mangal S et al (2010) Evaluation of mucoadhesive plga microparticles for nasal immunization. AAPS J 12(2):130–137. https://doi.org/10.1208/s12248-009-9169-1

    Article  Google Scholar 

  27. Fromen CA, Robbins GR, Shen TW et al (2015) Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization. Proc Natl Acad Sci USA 112(2):488–493. https://doi.org/10.1073/pnas.1422923112

    Article  Google Scholar 

  28. Ferber S, Gonzalez RJ, Cryer AM et al (2020) Immunology-guided biomaterial’s design as mucosal cancer vaccine. Adv Mater 32(13):1903847. https://doi.org/10.1002/adma.201903847

    Article  Google Scholar 

  29. Xing L, Zhou TJ, Fan YT et al (2019) Efficient mucosal immunization by mucoadhesive and ph-sensitive polymeric vaccine delivery system. Macromol Res 27(3):215–226. https://doi.org/10.1007/s13233-019-7042-3

    Article  Google Scholar 

  30. Zhang TR, Zhang Q, Ge JP et al (2009) A self-templated route to hollow silica microspheres. J Phys Chem C 113(8):3168–3175. https://doi.org/10.1021/jp810360a

    Article  Google Scholar 

  31. Pires A, Fortuna A, Alves G et al (2009) Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci 12(3):288–311. https://doi.org/10.18433/J3nc79

    Article  Google Scholar 

  32. Tezel A, Sens A, Tuchscherer J et al (2001) Frequency dependence of sonophoresis. Pharm Res 18(12):1694–1700. https://doi.org/10.1023/a:1013366328457

    Article  Google Scholar 

  33. Guan X, Chen J, Hu Y et al (2018) Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase. Biomaterials 171:198–206. https://doi.org/10.1016/j.biomaterials.2018.04.039

    Article  Google Scholar 

  34. Han TL, Zhang XM, Fu XQ et al (2017) Facile synthesis of chitosan nanoparticle-modified MnO2 nanoflakes for ultrafast adsorption of pb(II) from aqueous solution. Water Supply 17(1):32–38. https://doi.org/10.2166/ws.2016.109

    Article  Google Scholar 

  35. Haris PI, Severcan F (1999) Ftir spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B Enzym 7(1–4):207–221. https://doi.org/10.1016/S1381-1177(99)00030-2

    Article  Google Scholar 

  36. Cone RA (2009) Barrier properties of mucus. Adv Drug Del Rev 61(2):75–85. https://doi.org/10.1016/j.addr.2008.09.008

    Article  Google Scholar 

  37. Mora JR, von Andrian UH (2006) T-cell homing specificity and plasticity: new concepts and future challenges. Trends Immunol 27(5):235–243. https://doi.org/10.1016/j.it.2006.03.007

    Article  Google Scholar 

  38. Lv M, Li S, Zhao HJ et al (2017) Redox-responsive hyperbranched poly(amido amine) and polymer dots as a vaccine delivery system for cancer immunotherapy. J Mater Chem B 5(48):9532–9545. https://doi.org/10.1039/c7tb02334k

    Article  Google Scholar 

  39. Van De Laar L, Coffer PJ, Woltman AM (2012) Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 119(15):3383–3393. https://doi.org/10.1182/blood-2011-11-370130

    Article  Google Scholar 

  40. Dobrovolskaia MA, McNeil SE (2016) Immunological properties of engineered nanomaterials: an introduction. In: Dobrovolskaia MA (Ed.), Handbook of Immunological Properties of Engineered Nanomaterials vol. 1, pp. 1-24

  41. Li M, Jiang YH, Xu CQ et al (2013) Enhanced immune response against HIV-1 induced by a heterologous DNA prime-adenovirus boost vaccination using mannosylated polyethyleneimine as DNA vaccine adjuvant. Int J Nanomed 8:1843–1854. https://doi.org/10.2147/Ijn.S43827

    Article  Google Scholar 

  42. Wilson HL, Obradovic MR (2015) Evidence for a common mucosal immune system in the pig. Mol Immunol 66(1):22–34. https://doi.org/10.1016/j.molimm.2014.09.004

    Article  Google Scholar 

  43. Li X, Wang XP, Ito A (2018) Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chem Soc Rev 47(13):4954–4980. https://doi.org/10.1039/c8cs00028j

    Article  Google Scholar 

  44. Paul WE, Seder RA (1994) Lymphocyte responses and cytokines. Cell 76(2):241–251. https://doi.org/10.1016/0092-8674(94)90332-8

    Article  Google Scholar 

  45. Liu ZG, Xing J, Zheng SS et al (2016) Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote th1-bias immune response. Carbohydr Polym 142:141–148. https://doi.org/10.1016/j.carbpol.2016.01.021

    Article  Google Scholar 

  46. Fearon DT, Manders P, Wagner SD (2001) Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science 293(5528):248–250. https://doi.org/10.1126/science.1062589

    Article  Google Scholar 

  47. Kinjo Y, Kronenberg M (2005) Vα14i NKT cells are innate lymphocytes that participate in the immune response to diverse microbes. J Clin Immunol 25(6):522–533. https://doi.org/10.1007/s10875-005-8064-5

    Article  Google Scholar 

  48. Okazaki S, Iwasaki T, Yuba E et al (2018) Evaluation of ph-sensitive fusogenic polymer-modified liposomes co-loaded with antigen and α-galactosylceramide as an anti-tumor vaccine. J Vet Med Sci 80(2):197–204. https://doi.org/10.1292/jvms.17-0491

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFC0311103).

Author information

Authors and Affiliations

Authors

Contributions

HWX: conceptualization, investigation, writing—original draft. YL: methodology, formal analysis, data curation. MS: validation. DGY: resources. HBW: supervision, funding acquisition, validation. ZHL: project administration, funding acquisition, writing—review & editing.

Corresponding authors

Correspondence to Huaibin Wan or Zonghua Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animal experiments in this study followed animal ethics and Jinan University guidelines (Ethics Approval Number: 20211116-04).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 285 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Liao, Y., Svetlana, M. et al. Enhancement of intranasal mucosal immunization of mucosal vaccines by ultrasonic treatment. Bio-des. Manuf. 6, 405–422 (2023). https://doi.org/10.1007/s42242-023-00231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-023-00231-9

Keywords

Navigation