Skip to main content
Log in

Development of a 3D subcutaneous construct containing insulin-producing beta cells using bioprinting

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Type 1 diabetes is caused by insulin deficiency due to the loss of beta cells in the islets of Langerhans. In severe cases, islet transplantation into the portal vein is performed. However, due to the loss of transplanted islets and the failure of islet function, the 5-year insulin independence rate of these patients is < 50%. In this study, we developed a long-term, insulin-secreting, 3D-bioprinted construct implanted subcutaneously with the aim of preventing islet loss. The bioprinted construct was fabricated by the multi-layer bioprinting of beta-cell (mouse insulinoma-6: MIN-6)-encapsulated alginate bioink and poly(caprolactone) biodegradable polymer. A glucose response assay revealed that the bioprinted constructs proliferated and released insulin normally during the 4-week in vitro period. Bioprinted MIN-6 generated clusters with a diameter of 100–200 µm, similar to the original pancreatic islets in the construct. In an in vivo study using type 1 diabetes mice, animals implanted with bioprinted constructs showed three times higher insulin secretion and controlled glucose levels at 8 weeks after implantation. Because the implanted, bioprinted constructs had a positive effect on insulin secretion in the experimental animals, the survival rate of the implanted group (75%) was three times higher than that of the non-implanted group (25%). The results suggest that the proposed, 3D-bioprinted, subcutaneous construct can be a better alternative to portal vein islet transplantation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sneddon JB, Tang Q, Stock P et al (2018) Stem cell therapies for treating diabetes: progress and remaining challenges. Cell Stem Cell 22(6):810–823. https://doi.org/10.1016/j.stem.2018.05.016

    Article  Google Scholar 

  2. Hu C, Jia W (2019) Therapeutic medications against diabetes: what we have and what we expect. Adv Drug Deliv Rev 139:3–15. https://doi.org/10.1016/j.addr.2018.11.008

    Article  Google Scholar 

  3. IDF Diabetes Atlas (2017) International diabetes federation, 8th edn. Brussels, Belgium

  4. Marchioli G, van Gurp L, van Krieken PP et al (2015) Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation. Biofabrication 7:025009. https://doi.org/10.1088/1758-5090/7/2/025009

    Article  Google Scholar 

  5. Graham ML, Schuurman H (2017) Pancreatic islet xenotransplantation. Drug Discov Today Dis Models 23:43–50. https://doi.org/10.1016/j.ddmod.2017.11.004

    Article  Google Scholar 

  6. Bennet W, Sundberg B, Groth CG et al (1999) Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 48(10):1907–1914. https://doi.org/10.2337/diabetes.48.10.1907

    Article  Google Scholar 

  7. Paraskevas S, Maysinger D, Wang R et al (2000) Cell loss in isolated human islets occurs by apoptosis. Pancreas 20(3):270–276. https://doi.org/10.1097/00006676-200004000-00008

    Article  Google Scholar 

  8. Thomas F, Wu J, Contreras JL et al (2001) A tripartite anoikis-like mechanism causes early isolated islet apoptosis. Surgery 130(2):333–338. https://doi.org/10.1067/msy.2001.116413

    Article  Google Scholar 

  9. Thomas FT, Contreras JL, Bilbao G et al (1999) Anoikis, extracellular matrix, and apoptosis factors in isolated cell transplantation. Surgery 126(2):299–304. https://doi.org/10.1016/S0039-6060(99)70169-8

    Article  Google Scholar 

  10. Lai Y, Schneider D, Kidszun A et al (2005) Vascular endothelial growth factor increases functional beta cell mass by improvement of angiogenesis of isolated human and murine pancreatic islets. Transplantation 79(11):1530–1536. https://doi.org/10.1097/01.tp.0000163506.40189.65

    Article  Google Scholar 

  11. Pileggi A, Molano RD, Ricordi C et al (2006) Reversal of diabetes by pancreatic islet transplantation into a subcutaneous, neovascularized device. Transplantation 81(9):1318–1324. https://doi.org/10.1097/01.tp.0000203858.41105.88

    Article  Google Scholar 

  12. Shapiro AM, Gallant HL, Hao EG et al (2005) The portal immunosuppressive storm: relevance to islet transplantation? Ther Drug Monit 27(1):35–37. https://doi.org/10.1097/00007691-200502000-00008

    Article  Google Scholar 

  13. Billaudel B, Sutter BC (1982) Immediate in-vivo effect of corticosterone on glucose-induced insulin secretion in the rat. J Endocrinol 95(3):315–320. https://doi.org/10.1677/joe.0.0950315

    Article  Google Scholar 

  14. Pagliuca FW, Millman JR, Gurtler M et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439. https://doi.org/10.1016/j.cell.2014.09.040

    Article  Google Scholar 

  15. Millman JR, Xie C, Van Dervort A et al (2016) Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat Commun 7:11463. https://doi.org/10.1038/ncomms11463

    Article  Google Scholar 

  16. Hesse UJ, Sutherland DE, Gores PF et al (1986) Comparison of splenic and renal sub capsular islet autografting in dogs. Transplantation 41:271–274. https://doi.org/10.1097/00007890-198602000-00028

    Article  Google Scholar 

  17. Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin secreting cells in vivo. Nat Biotechnol 26(4):443–495. https://doi.org/10.1038/nbt1393

    Article  Google Scholar 

  18. Lacy PE, Hegre OD, Gerasimidi-Vazeou A et al (1991) Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 254:1782–1784. https://doi.org/10.1126/science.1763328

    Article  Google Scholar 

  19. Mridha AR, Dargaville TR, Dalton PD et al (2020) Prevascularized retrievable hybrid implant to enhance function of subcutaneous encapsulated islets. Tissue Eng A. https://doi.org/10.1089/ten.TEA.2020.0179

    Article  Google Scholar 

  20. Motte E, Szepessy E, Suenens K et al (2014) Beta cell therapy consortium EU-FP7, composition and function of macro encapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am J Physiol Endocrinol Metab 307:E838–E846. https://doi.org/10.1152/ajpendo.00219.2014

    Article  Google Scholar 

  21. Vegas AJ, Veiseh O, Gürtler M et al (2016) Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med 22(3):306–311. https://doi.org/10.1038/nm.4030

    Article  Google Scholar 

  22. Veiseh O, Doloff JC, Ma M et al (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14:643–651. https://doi.org/10.1038/nmat4290

    Article  Google Scholar 

  23. Pedraza E, Brady AC, Fraker CA et al (2013) Macroporous three-dimensional PDMS scaffolds for extrahepatic islet transplantation. Cell Transpl 22:1123–1135. https://doi.org/10.3727/096368912X657440

    Article  Google Scholar 

  24. Blomeier H, Zhang X, Rives C et al (2006) Polymer scaffolds as synthetic microenvironments for extrahepatic islets transplantation. Transplantation 82:452–459. https://doi.org/10.3727/096368912X657440

    Article  Google Scholar 

  25. Dufour JM, Rajotte RV, Zimmerman M et al (2005) Development of an ectopic site for islet transplantation using biodegradable scaffolds. Tissue Eng 11:1323–1331. https://doi.org/10.1089/ten.2005.11.1323

    Article  Google Scholar 

  26. Mao GH, Chen GA, Bai HY et al (2009) The reversal of hyper glycaemia in diabetic mice using PLGA scaffolds seeded with islet-like cells derived from human embryonic stem cells. Biomaterials 30(9):1706–1714. https://doi.org/10.1016/j.biomaterials.2008.12.030

    Article  Google Scholar 

  27. Daoud JT, Petropavlovskaia MS, Patapas JM et al (2011) Long-term in vitro human pancreatic islet culture using three-dimensional micro fabricated scaffolds. Biomaterials 32(6):1536–1542. https://doi.org/10.1016/j.biomaterials.2010.10.036

    Article  Google Scholar 

  28. Brady AC, Martino MM, Pedraza E et al (2013) Pro-angiogenic hydrogels within macroporous scaffolds enhances islet engraftment in an extrahepatic site. Tissue Eng A 19:2544–2552. https://doi.org/10.1089/ten.TEA.2012.0686

    Article  Google Scholar 

  29. Buitinga M, Truckenmüller R, Engelse MA et al (2013) Microwell scaffolds for the extrahepatic transplantation of islets of Langerhans. PLoS ONE 8:e64772. https://doi.org/10.1371/journal.pone.0064772

    Article  Google Scholar 

  30. Mallett AG, Korbutt GS (2009) Alginate modification improves long-term survival and function of transplanted encapsulated islets. Tissue Eng A 15:1301–1309. https://doi.org/10.1089/ten.tea.2008.0118

    Article  Google Scholar 

  31. De Vos P, De Haan BJ, Wolters GH et al (1997) Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40:262–270. https://doi.org/10.1007/s001250050673

    Article  Google Scholar 

  32. Ludwig B, Reichel A, Steffen A et al (2013) Transplantation of human islets without immunosuppression. Proc Natl Acad Sci 110(47):19054–19058. https://doi.org/10.1073/pnas.1317561110

    Article  Google Scholar 

  33. Ahn CB, Son KH, Yu YS et al (2019) Development of a flexible 3D printed scaffold with a cell-adhesive surface for artificial trachea. Biomed Mater 14:055001. https://doi.org/10.1088/1748-605X/ab2a6c

    Article  Google Scholar 

  34. Ahn CB, Kim Y, Park SJ et al (2018) Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering. J Biomater Sci Polym Ed 29:917–931. https://doi.org/10.1080/09205063.2017.1383020

    Article  Google Scholar 

  35. Lee JW, Choi YJ, Yong WJ et al (2016) Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 8:015007. https://doi.org/10.1088/1758-5090/8/1/015007

    Article  Google Scholar 

  36. Lee JW, Soman P, Park JH et al (2016) A tubular biomaterial construct exhibiting a negative Poisson’s ratio. PLoS ONE 11:e0155681. https://doi.org/10.1371/journal.pone.0155681

    Article  Google Scholar 

  37. Lee JW, Kang KS, Lee SH et al (2011) Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3D scaffold incorporating BMP-2 loaded PLGA microspheres. Biomaterials 32:744–752. https://doi.org/10.1016/j.biomaterials.2010.09.035

    Article  Google Scholar 

  38. Yu C, Ma X, Zhu W et al (2019) Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials 194:1–13. https://doi.org/10.1016/j.biomaterials.2018.12.009

    Article  Google Scholar 

  39. You S, Wang P, Schimelman J et al (2019) High-fidelity 3D printing using flashing photopolymerization. Addit Manuf 30:100834. https://doi.org/10.1016/j.addma.2019.100834

    Article  Google Scholar 

  40. Kang HW, Lee SJ, Ko IK et al (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotech 34(3):312–319. https://doi.org/10.1038/nbt.3413

    Article  Google Scholar 

  41. Koski S, Bose S (2019) Effects of amylose content on the mechanical properties of starch-hydroxyapatite 3D printed bone scaffolds. Addit Manuf 30:100817. https://doi.org/10.1016/j.addma.2019.100817

    Article  Google Scholar 

  42. Ding H, Chang RC (2018) Simulating image-guided in situ bioprinting of a skin graft onto a phantom burn wound bed. Addit Manuf 22:708–719. https://doi.org/10.1016/j.addma.2018.06.022

    Article  Google Scholar 

  43. Duin S, Schütz K, Ahlfeld T et al (2019) 3D bioprinting of functional islets of Langerhans in an alginate/methylcellulose hydrogel blend. Adv Healthc Mater 8(7):e1801631. https://doi.org/10.1002/adhm.201801631

    Article  Google Scholar 

  44. Sun Y, Zhang M, Ji S et al (2015) Induction differentiation of rabbit adipose-derived stromal cells into insulin-producing cells in vitro. Mol Med Rep 12(5):6835–6840. https://doi.org/10.3892/mmr.2015.4305

    Article  Google Scholar 

  45. Sun Y, Jiang BG, Li WT et al (2011) MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91(1):94–100. https://doi.org/10.1016/j.diabres.2010.11.006

    Article  Google Scholar 

  46. Song J, Millman JR (2017) Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells. Biofabrication 9:015002. https://doi.org/10.1088/1758-5090/9/1/015002

    Article  Google Scholar 

  47. Nair GG, Liu JS, Russ HA et al (2019) Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat Cell Biol 21:263–274. https://doi.org/10.1038/s41556-018-0271-4

    Article  Google Scholar 

  48. Seo H, Son J, Park JK (2020) Controlled 3D co-culture of beta cells and endothelial cells in a micro patterned collagen sheet for reproducible construction of an improved pancreatic pseudo-tissue. APL Bioeng 4:046103. https://doi.org/10.1063/5.0023873

    Article  Google Scholar 

  49. Lin JY, Cheng J, Du YQ et al (2020) In vitro expansion of pancreatic islet clusters facilitated by hormones and chemicals. Cell Discov 6:20. https://doi.org/10.1038/s41421-020-0159-x

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare, Republic of Korea (No. HH21C0011), and Gachon University Gil Medical Center (No. FRD 2021-02).

Author information

Authors and Affiliations

Authors

Contributions

CBA, JHL, KHS, and JWL contributed to conceptualization; CBA and JHL were involved in validation; JHK, THK, and HSJ contributed to formal analysis; KHS and JWL were involved in writing—original draft, and project administration. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Kuk H. Son or Jin W. Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The animal study protocol was approved by the Animal Subjects Committee of Gachon University (Approval number: LCDI-2018-0057). The institutional guidelines for the care and use of laboratory animals were followed.

Availability of data and materials

Data are contained within the article.

Additional information

Chi B. Ahn and Ji-Hyun Lee have contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, C.B., Lee, JH., Kim, J.H. et al. Development of a 3D subcutaneous construct containing insulin-producing beta cells using bioprinting. Bio-des. Manuf. 5, 265–276 (2022). https://doi.org/10.1007/s42242-021-00178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00178-9

Keywords

Navigation