Skip to main content
Log in

Fabrication of gelatin methacryloyl hydrogel microneedles for transdermal delivery of metformin in diabetic rats

  • Research Article
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Injection therapy for diabetes has poor patient compliance, and the pain occurring at the site of subcutaneous injections causes significant inconvenience to diabetic patients. In this work, to demonstrate the benefits of an alternative drug delivery technique that overcomes these issues, methacrylated gelatin hydrogel-forming microneedles integrated with metformin were developed to adjust blood glucose levels in diabetic rats. Gelatin methacryloyl microneedles (GelMA-MNs) with different degrees of substitution were successfully prepared by a micro-molding method. The resultant GelMA-MNs exhibited excellent mechanical properties and moisture resistance. Metformin, an anti-diabetic drug, was further encapsulated into the GelMA-MNs, and its release rate could be controlled by the three-dimensional cross-linked network of microneedles, thereby exhibiting sustained drug release behaviors in vitro and implying a better therapeutic effect compared with that of subcutaneous injection in diabetic rats. The drug release period could be significantly prolonged by improving the cross-link density of GelMA-MNs. The results of hypoglycemic effect evaluation show that the application of GelMA-MNs for transdermal delivery in diabetic rats has promising benefits for diabetes treatment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tabák AG, Herder C, Rathmann W et al (2012) Prediabetes: a high-risk state for diabetes development. Lancet 379(9833):2279–2290. https://doi.org/10.1016/S0140-6736(12)60283-9

    Article  Google Scholar 

  2. International Diabetes Federation (2019) IDF Diabetes Atlas 9th Edition Brussels: IDF; www.idf.org/diabetesatlas.

  3. Chen G, Yu J, Gu Z (2019) Glucose-responsive microneedle latches for diabetes treatment. J Diabetes Sci Technol 13(1):41–48. https://doi.org/10.1177/1932296818778607

    Article  Google Scholar 

  4. Yu JC, Zhang YQ, Sun WJ et al (2017) Insulin-responsive glucagon delivery for prevention of hypoglycemia. Small 13(19):1603028. https://doi.org/10.1002/smll.201603028

    Article  Google Scholar 

  5. Casparie AF, Elvino LD (1985) Severe hypoglycemia in diabetic patients: frequency, causes, prevention. Diabetes Care 8(2):141–145. https://doi.org/10.2337/diacare.8.2.141

    Article  Google Scholar 

  6. Gao Y, Hou MM, Yang RH et al (2019) Highly porous silk fibroin scaffold packed in PEGDA/sucrose microneedles for controllable transdermal drug delivery. Biomacromol 20(3):1334–1345. https://doi.org/10.1021/acs.biomac.8b01715

    Article  Google Scholar 

  7. Sharma S, Hatware K, Bhadane P et al (2019) Recent advances in microneedle composites for biomedical applications: advanced drug delivery technologies. Mater Sci Eng C 103:109717. https://doi.org/10.1016/j.msec.2019.05.002

    Article  Google Scholar 

  8. Hao Y, Chen YW, He XL et al (2020) Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioact Mater 5(3):542–552. https://doi.org/10.1016/j.bioactmat.2020.04.002

    Article  Google Scholar 

  9. Larraneta E, Lutton REM, Woolfson AD et al (2016) Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R 104:1–32. https://doi.org/10.1016/j.mser.2016.03.001

    Article  Google Scholar 

  10. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Delivery Rev 56(5):581–587. https://doi.org/10.1016/j.addr.2003.10.023

    Article  Google Scholar 

  11. Jamaledin R, Yiu CKY, Zare EN et al (2020) Advances in antimicrobial microneedle patches for combating infections. Adv Mater 32(33):2002129. https://doi.org/10.1002/adma.202002129

    Article  Google Scholar 

  12. Singh P, Carrier A, Chen YL et al (2019) Polymeric microneedles for controlled transdermal drug delivery. J Contr Release 315(10):97–113. https://doi.org/10.1016/j.jconrel.2019.10.022

    Article  Google Scholar 

  13. Kim S, Yang H, Eum J et al (2020) Implantable powder-carrying microneedles for transdermal delivery of high-dose insulin with enhanced activity. Biomaterials 232:119733. https://doi.org/10.1016/j.biomaterials.2019.119733

    Article  Google Scholar 

  14. Zheng MJ, Wang ZF, Chang H et al (2020) Osmosis-powered hydrogel microneedles for microliters of skin interstitial fluid extraction within minutes. Adv Healthcare Mater 9(10):1901683. https://doi.org/10.1002/adhm.201901683

    Article  Google Scholar 

  15. Tsioris k, Raja WK, Pritchard EM, et al (2012) Fabrication of silk microneedle for controlled-release drug delivery. Adv Funct Mater 22(2):330–335. https://doi.org/10.1002/adfm.201102012

    Article  Google Scholar 

  16. Chi JJ, Zhang XX, Chen CW et al (2020) Antibacterial and angiogenic chitosan microneedle array patch for promoting wound healing. Bioact Mater 5(2):253–259. https://doi.org/10.1016/j.bioactmat.2020.02.004

    Article  Google Scholar 

  17. Zhang YQ, Wang JQ, Yu JC et al (2018) Bioresponsive microneedles with a sheath structure for H2O2 and pH cascade-triggered insulin delivery. Small 14(14):1704181. https://doi.org/10.1002/smll.201704181

    Article  Google Scholar 

  18. Kim M, Jung B, Park JH (2012) Hydrogel swelling as a trigger to release biodegradable polymer microneedles. Biomaterials 33(2):668–678. https://doi.org/10.1016/j.biomaterials.2011.09.074

    Article  Google Scholar 

  19. Ying GY, Jiang N, Yu CJ et al (2018) Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Des Manuf 1(4):215–224. https://doi.org/10.1007/s42242-018-0028-8

    Article  Google Scholar 

  20. Kong B, Chen Y, Liu R et al (2020) Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat Commun 11(1):1435. https://doi.org/10.1038/s41467-020-14887-9

    Article  Google Scholar 

  21. Nichol JW, Koshy ST, Bae H et al (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544. https://doi.org/10.1016/j.biomaterials.2010.03.064

    Article  Google Scholar 

  22. Chen YC, Lin RZ, Qi H et al (2012) Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater 22(10):2027–2039. https://doi.org/10.1002/adfm.201101662

    Article  Google Scholar 

  23. Ying GL, Jiang N, Parra-Cantu C et al (2020) Bioprinted injectable hierarchically porous gelatin methacryloyl hydrogel constructus with shape-memory properties. Adv Funct Mater 30(46):2003740. https://doi.org/10.1002/adfm.202003740

    Article  Google Scholar 

  24. Yue K, Li XY, Schrobback K et al (2017) Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials 139:163–171. https://doi.org/10.1016/j.biomaterials.2017.04.050

    Article  Google Scholar 

  25. Lee K, Xue YM, Lee J et al (2020) A patch of detachable hybrid microneedle depot for localized delivery of mesenchymal stem cells in regeneration therapy. Adv Funct Mater 30(23):2000086. https://doi.org/10.1002/adfm.202000086

    Article  Google Scholar 

  26. Fares MM, Sani ES, Lara RP et al (2018) Interpenetrating network gelatin methacryloyl (GelMA) and pectin-g-PCL hydrogels with tunable properties for tissue engineering. Biomater Sci 6(11):2938–2950. https://doi.org/10.1039/C8BM00474A

    Article  Google Scholar 

  27. Noshadi I, Hong S, Sullivan KE et al (2017) In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater Sci 5(10):2093–2105. https://doi.org/10.1039/C7BM00110J

    Article  Google Scholar 

  28. Luo ZM, Sun WJ, Fang J et al (2019) Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv Healthcare Mater 8(3):1801054. https://doi.org/10.1002/adhm.201801054

    Article  Google Scholar 

  29. Zhu JX, Zhou XW, Kim HJ et al (2020) Gelatin methacryloyl microneedle patches for minimally invasive extraction of skin interstitial fluid. Small 16(16):1905910. https://doi.org/10.1002/smll.201905910

    Article  Google Scholar 

  30. Yu WJ, Jiang GH, Liu DP et al (2017) Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater Sci Eng C 71(1):725–734. https://doi.org/10.1016/j.msec.2016.10.063

    Article  Google Scholar 

  31. Chen MC, Huang SF, Lai KY et al (2013) Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials 34(12):3077–3086. https://doi.org/10.1016/j.biomaterials.2012.12.041

    Article  Google Scholar 

  32. Yu WJ, Jiang GH, Liu DP et al (2017) Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater Sci Eng C 73(1):425–428. https://doi.org/10.1016/j.msec.2016.12.111

    Article  Google Scholar 

  33. He RY, Niu Y, Li ZD et al (2020) A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid. Adv Healthcare Mater 9(4):1901201. https://doi.org/10.1002/adhm.201901201

    Article  Google Scholar 

  34. Migdadi EM, Courtenay AJ, Tekko IA et al (2018) Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Contr Release 285:142–151. https://doi.org/10.1016/j.jconrel.2018.07.009

    Article  Google Scholar 

  35. Zhang Y, Jiang GH, Yu WJ et al (2018) Polymer microneedles fabricated from alginate and maltose for transdermal delivery of insulin. Mater Sci Eng C 85(1):18–26. https://doi.org/10.1016/j.msec.2017.12.006

    Article  Google Scholar 

  36. Liu DP, Zhang Y, Jiang GH et al (2018) Fabrication of dissolving microneedles with thermal-responsive coating for NIR-triggered transdermal delivery of metformin on diabetic rats. ACS Biomater Sci Eng 4(5):1687–1695. https://doi.org/10.1021/acsbiomaterials.8b00159

    Article  Google Scholar 

  37. Jiang Q, Liu Y, Guo RR et al (2019) Erythrocyte-cancer hybrid membrane-camouflaged melanin nanoparticles for enhancing photothermal therapy efficacy in tumors. Biomaterials 192:292–308. https://doi.org/10.1016/j.biomaterials.2018.11.021

    Article  Google Scholar 

  38. Van Den Bulcke AI, Bogdanov B, Rooze ND et al (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromol 1(1):31–38. https://doi.org/10.1021/bm990017d

    Article  Google Scholar 

  39. Fonseca DFS, Costa PC, Almeida IF et al (2020) Swellable gelatin methacryloyl microneedles for extraction of interstitial skin fluid toward minimally invasive monitoring of urea. Macromol Biosci 20(10):2000195. https://doi.org/10.1002/mabi.202000195

    Article  Google Scholar 

  40. Sun MY, Sun XT, Wang ZY et al (2018) Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers 10(11):1290. https://doi.org/10.3390/polym10111290

    Article  Google Scholar 

  41. Hoch E, Hirth T, Tovar GEM et al (2013) Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. J Mater Chem B 1(41):5675–5685. https://doi.org/10.1039/c3tb20745e

    Article  Google Scholar 

  42. Li W, Terry RN, Tang J et al (2019) Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat Biomed Eng 3(3):220–229. https://doi.org/10.1038/s41551-018-0337-4

    Article  Google Scholar 

  43. Yu WJ, Jiang GH, Zhang Y et al (2017) Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater Sci Eng C 80(1):187–196. https://doi.org/10.1016/j.msec.2017.05.143

    Article  Google Scholar 

  44. Sulllivan SP, Koutsonanos DG, Martin MD et al (2010) Dissolving polymer microneedle patches for influenza vaccination. Nat Med 16(8):915–920. https://doi.org/10.1038/nm.2182

    Article  Google Scholar 

  45. Park JH, Allen MG, Prausnitz MR (2005) Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J Contr Release 104(1):51–66. https://doi.org/10.1016/j.jconrel.2005.02.002

    Article  Google Scholar 

  46. Fu Y, Kao WJ (2010) Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Del 7(4):429–444. https://doi.org/10.1517/17425241003602259

    Article  Google Scholar 

  47. Kim MY, Jung BY, Park JH (2012) Hydrogel swelling as a trigger to release biodegradable polymer microneedles in skin. Biomaterials 33(2):668–678. https://doi.org/10.1016/j.biomaterials.2011.09.074

    Article  Google Scholar 

  48. Liu DP, Yu B, Jiang GH et al (2018) Fabrication of composite microneedles integrated with insulin-loaded CaCO3 microparticles and PVP for transdermal delivery in diabetic rats. Mater Sci Eng C 90(1):180–188. https://doi.org/10.1016/j.msec.2018.04.055

    Article  Google Scholar 

  49. Chang H, Zheng MJ, Yu XJ et al (2017) A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater 29(37):02243. https://doi.org/10.1002/adma.201702243

    Article  Google Scholar 

  50. Yu WJ, Jiang GH, Zhang Y et al (2017) Near-infrared light-responsive and separable microneedles for transdermal drug delivery of metformin on diabetic rats. J Mater Chem B 5(48):9507–9513. https://doi.org/10.1039/C7TB02236K

    Article  Google Scholar 

  51. Zhou G, Myers R, Li Y et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174. https://doi.org/10.1172/JCI13505

    Article  Google Scholar 

  52. Yang Z, Chai DN, Gao MY et al (2019) Thermal ablation of separable microneedles for transdermal delivery of metformin on diabetic rats. Int J Polym Mater Polym Biomater 68(14):850–858. https://doi.org/10.1080/00914037.2018.1517347

    Article  Google Scholar 

  53. Chen BZ, Zhang LQ, Xia YY et al (2020) A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci Adv 6(28):eaba7260. https://doi.org/10.1126/sciadv.aba7260

    Article  Google Scholar 

  54. Yu JC, Wang JQ, Zhang YQ et al (2020) Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng 4(5):499–506. https://doi.org/10.1038/s41551-019-0508-y

    Article  Google Scholar 

  55. Wu CY, Wang SG, Zhao JL et al (2019) Biodegradable Fe (III)@WS2-PVP nanocapsules for redox reaction and time-enhanced nanocatalytic, photothermal, and chemotherapy. Adv Funct Mater 29(26):1901722. https://doi.org/10.1002/adfm.201901722

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51873194) and the Natural Science Foundation of Zhejiang Province, China (No. LY18E030006). We also gratefully acknowledge Zhejiang Academy of Medical Science for histological experiments.

Author information

Authors and Affiliations

Authors

Contributions

ZYZ and GHJ contributed to conceptualization; ZYZ contributed to the experimental research; GHJ and YF Sun contributed to resources, funding acquisition and supervision; XYZ, GS, and TQL contributed to methodology; ZYZ contributed to writing; YTJ, MJF, and YF Shi helped in animal experimental research and data analysis; GHJ reviewed and edited the manuscript.

Corresponding authors

Correspondence to Guohua Jiang or Yanfang Sun.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

All institutional and national guidelines for the care and use of laboratory animals were followed. All the animal procedures were reviewed and approved by the Animal Ethics Committee of Zhejiang Sci-Tech University (acceptance number: 2019-02-01).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 374 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Jiang, G., Liu, T. et al. Fabrication of gelatin methacryloyl hydrogel microneedles for transdermal delivery of metformin in diabetic rats. Bio-des. Manuf. 4, 902–911 (2021). https://doi.org/10.1007/s42242-021-00140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-021-00140-9

Keywords

Navigation