Skip to main content
Log in

High-fidelity numerical simulation of unsteady cavitating flow around a hydrofoil

  • Special Column on the 33rd NCHD-Second Part (Guest Editor Zheng Ma)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Cavitation is a widespread and detrimental phenomenon in hydraulic machinery, therefore, it requires to be accurately predicted. In this study, large eddy simulation (LES), scale-adaptive simulation (SAS) and grid-adaptive simulation (GAS) are employed to investigate the unsteady cavitating flow around a NACA0009 hydrofoil. The prediction accuracy of GAS, SAS, both using the shear-stress transport (SST) kω model as baseline turbulence model, is validated by comparing with experimental and LES results. The cavity behaviors and turbulence fields are analyzed systematically. Results show that the GAS gives a more reasonable turbulent viscosity and accurately predicts the periodic evolution of typical vortical structures of cavitating flow, such as tip leakage vortex cavitation, tip separation vortex cavitation, leading-edge cavitation, and trailing-edge vortex. The time-averaged cavity volume, volume fluctuation amplitude, and characteristic frequencies of cavities predicted by the GAS are very closed to the LES, while the SAS fails to accurately capture these cavity characteristics. Furthermore, the local trace criterion is applied to extract the vortical structures and to analyze the swirling patterns of the tip leakage vortex. Multi-scale vortical structures in LES are well identified by local trace criterion. The prediction accuracy of the SAS method for small-scale vortical structures, such as the vortex shedding on the suction side and the vortex rope around the tip leakage vortex, is obviously insufficient, while the GAS has a higher accuracy in predicting vortex shedding. The tip leakage vortex and induced vortex extracted from GAS are also closer to that of LES in both swirling patterns and scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arndt R. E. A. Cavitation in vortical flows [J]. Annual Review of Fluid Mechanics, 2002, 34: 143–175.

    Article  MathSciNet  MATH  Google Scholar 

  2. Huang B., Qiu S. C., Li X. B. et al. A review of transient flow structure and unsteady mechanism of cavitating flow [J]. Journal of Hydrodynamics, 2019, 31(3): 429–444.

    Article  Google Scholar 

  3. Kadivar E., Ochiai T., Iga Y. et al. An experimental investigation of transient cavitation control on a hydrofoil using hemispherical vortex generators [J]. Journal of Hydrodynamics, 2021, 33(6): 1139–1147.

    Article  Google Scholar 

  4. Huan Y. Y., Liu Y. Y., Li X. J. et al. Experimental and numerical investigations of cavitation evolution in a highspeed centrifugal pump with inducer [J]. Journal of Hydrodynamics, 2021, 33(1): 140–149.

    Article  Google Scholar 

  5. Coutier-Delgosha O., Fortes-Patella R., Reboud J. L. et al. Numerical simulation of cavitating flow in 2D and 3D inducer geometries [J]. International Journal for Numerical Methods in Fluids, 2005, 48: 135–167.

    Article  MATH  Google Scholar 

  6. Zwart P. J., Gerber A. G., Belamri T. A two-phase flow model for predicting cavitation dynamics [C]. ICMF 2004 International Conference on Multiphase Flow, Yokohama, Japan, 2004.

  7. Senocak I., Shyy W. Interfacial dynamics-based modelling of turbulent cavitating flows, Part-1: Model development and steady-state computations [J]. International Journal for Numerical Methods in Fluids, 2004, 44: 975–995.

    Article  MATH  Google Scholar 

  8. Ghahramani E., Ström H., Bensow R. E. Numerical simulation and analysis of multi-scale cavitating flows [J]. Journal of Fluid Mechanics, 2021, 922: A22.

    Article  MathSciNet  MATH  Google Scholar 

  9. Coutier-Delgosha O., Fortes-Patella R., Reboud J. L. Simulation of unsteady cavitation with a two-equation turbulence model including compressibility effects [J]. Journal of Turbulence, 2002, 3: 058.

    Article  Google Scholar 

  10. Liebrand R., Klapwijk M., Lloyd T. et al. Transition and turbulence modeling for the prediction of cavitating tip vortices [J]. Journal of Fluids Engineering, 2021, 143(1): 011202.

    Article  Google Scholar 

  11. Cheng H. Y., Ji B., Long X. P. et al. A review of cavitation in tip-leakage flow and its control [J]. Journal of Hydrodynamics, 2021, 33(2): 226–242.

    Article  Google Scholar 

  12. Spalart P. R. Detached-eddy simulation [J]. Annual Review of Fluid Mechanics, 2009, 41: 181–202.

    Article  MATH  Google Scholar 

  13. Speziale C. G. Turbulence modeling for time-dependent RANS and VLES: A review [J]. AIAA Journal, 1998, 36(2): 173–184.

    Article  MATH  Google Scholar 

  14. Menter F. R., Egorov Y. The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description [J]. Flow, Turbulence and Combustion, 2010, 85: 113–138.

    Article  MATH  Google Scholar 

  15. Girimaji S. S. Partially-averaged Navier-Stokes model for turbulence: A Reynolds-averaged Navier-Stokes to direct numerical simulation bridging method [J]. Journal of Applied Mechanics, 2006, 73(3): 413–421.

    Article  MATH  Google Scholar 

  16. Hou J., Liu Y., Zhong L. et al. Effect of vorticity transport on flow structure in the tip region of axial compressors [J]. Physics of Fluids, 2022, 34(5): 055102.

    Article  Google Scholar 

  17. Liu Y., Xie N., Tang Y. et al. Investigation of hemocompatibility and vortical structures for a centrifugal blood pump based on large-eddy simulation [J]. Physics of Fluids, 2022, 34(11): 115111.

    Article  Google Scholar 

  18. Heinz S. A review of hybrid RANS-LES methods for turbulent flows: Concepts and applications [J]. Progress in Aerospace Sciences, 2020, 114: 100597.

    Article  Google Scholar 

  19. Durbin P. A. Some recent developments in turbulence closure modeling [J]. Annual Review of Fluid Mechanics, 2018, 50: 77–103.

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu Y., Yu X., Liu B. Turbulence models assess- ment for large-scale tip vortices in an axial compressor rotor [J]. AIAA Journal of Propulsion and Power, 2008, 24(1): 15–25.

    Article  Google Scholar 

  21. Liu Y., Lu L., Fang L. et al. Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity [J]. Physics Letters A, 2011, 375(24): 2377–2381.

    Article  Google Scholar 

  22. Liu Y. W., Yan H., Fang L. et al. Modified k-ω model using kinematic vorticity for corner separation in compressor cascade [J]. Science China Technological Sciences, 2016, 59(5): 795–806.

    Article  Google Scholar 

  23. Liu Y. W., Yan H., Liu Y. J. et al. Numerical study of corner separation in a linear compressor cascade using various turbulence models [J]. Chinese Journal of Aeronautics, 2016, 29(3): 639–652.

    Article  MathSciNet  Google Scholar 

  24. Gao Y., Liu Y., Zhong L. et al. Study of the standard k-ε model for tip leakage flow in an axial compressor rotor [J]. International Journal of Turbo and Jet-Engines, 2016, 33(4): 353–360.

    Google Scholar 

  25. Liu Y., Tang Y., Scillitoe A. D. et al. Modification of shear stress transport turbulence model using helicity for predicting corner separation flow in a linear compressor cascade [J]. Journal of Turbomachinery, 2020, 142(2): 021004.

    Article  Google Scholar 

  26. Li W., Liu Y. Numerical investigation of corner separation flow using Spalart-Allmaras model with various modifications [J]. Aerospace Science and Technology, 2022, 127: 107682.

    Article  Google Scholar 

  27. Li W. H., Liu Y. W. Study of limit to the rotation function in the SA-RC turbulence model [J]. Chinese Journal of Aeronautics, 2023, 36(1): 246–265.

    Article  MathSciNet  Google Scholar 

  28. Liu Y., Yan H., Lu L. et al. Investigation of vortical structures and turbulence characteristics in corner separation in a linear compressor cascade using DDES [J]. Journal of Fluids Engineering, 2017, 139(2): 021107.

    Article  Google Scholar 

  29. Yan H., Liu Y., Li Q. et al. Turbulence characteristics in corner separation in a highly loaded linear compressor cascade [J]. Aerospace Science and Technology, 2018, 75: 139–154.

    Article  Google Scholar 

  30. Gao Y., Liu Y. A flow model for tip leakage flow in turbomachinery using a square duct with a longitudinal slit [J]. Aerospace Science and Technology, 2019, 95: 105460.

    Article  Google Scholar 

  31. Liu Y., Zhong L., Lu L. Comparison of DDES and URANS for unsteady tip leakage flow in an axial compressor rotor [J]. Journal of Fluids Engineering, 2019, 141(12): 121405.

    Article  Google Scholar 

  32. Tang Y., Liu Y., Lu L. Solidity effect on corner separation and its control in a high-speed low aspect ratio compressor cascade [J]. International Journal of Mechanical Sciences, 2018, 142–143: 304–321.

    Article  Google Scholar 

  33. Kim S., Pullan G., Hall C. A. et al. Stall inception in low-pressure ratio fans [J]. Journal of Turbomachinery, 2019, 141(7): 071005.

    Article  Google Scholar 

  34. Lopez D. I., Ghisu T., Kipouros T. et al. Extending highly loaded axial fan operability range through novel blade design [J]. Journal of Turbomachinery, 2022, 144(12): 121009.

    Article  Google Scholar 

  35. Rao A. N., Sureshkumar P., Stapelfeldt S. et al. Unsteady analysis of aeroengine intake distortion mechanisms: Vortex dynamics in crosswind conditions [C]. ASME Turbo Expo 2022, Turbomachinery Technical Conference and Exposition, Rotterdam, The Netherlands, 2022.

  36. Matsui K., Tani N., Perez E. et al. Calibrated rotation-helicity-quadratic constitutive relation Spalart-Allmaras (R-H-QCR SA) model for the prediction of multi-stage compressor characteristics [C]. ASME Turbo Expo 2022, Turbomachinery Technical Conference and Exposition, Rotterdam, The Netherlands, 2022.

  37. Wang C., Wang F., Li C. et al. A modified STRUCT model for efficient engineering computations of turbulent flows in hydro-energy machinery [J]. International Journal of Heat and Fluid Flow, 2020, 85: 108628.

    Article  Google Scholar 

  38. Wang C., Wang F., Ye C. et al. Application of the MST turbulence model to predict the tip leakage vortex flows [J]. Engineering Computations, 2021, 38(1): 344–353.

    Article  Google Scholar 

  39. Wang G., Liu Y. A grid-adaptive simulation model for turbulent flow predictions [J]. Physics of Fluids, 2022, 34(7): 075125.

    Article  Google Scholar 

  40. Dreyer M., Decaix J., Münch-Alligné C. et al. Mind the gap: A new insight into the tip leakage vortex using stereo-PIV [J]. Experiments in Fluids, 2014, 55: 1–13.

    Article  Google Scholar 

  41. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  42. Wang Y. Q., Gao Y. S., Xu H. et al., Liutex theoretical system and six core elements of vortex identification [J]. Journal of Hydrodynamics, 2020, 32(2): 197–211.

    Article  Google Scholar 

  43. Liu C., Yu Y., Gao Y. S. Liutex based new fluid kinematics [J], Journal of Hydrodynamics, 2022, 34(3): 355–371.

    Article  Google Scholar 

  44. Zhao M. S., Zhao W. W., Wan D. C. et al. Applications of Liutex-based force field models for cavitation simulation [J], Journal of Hydrodynamics, 2021, 33(3): 488–493.

    Article  Google Scholar 

  45. Tang X. R., Dong X. R., Cai X. S. et al., Liutex identification on hairpin vortex structures in a channel based on msfle and moving-PIV [J]. Journal of Hydrodynamics, 2021, 33(6): 1119–1128.

    Article  Google Scholar 

  46. Liu Y., Tang Y. An elliptical region method for identifying a vortex with indications of its compressibility and swirling pattern [J]. Aerospace Science and Technology, 2019, 95: 105448.

    Article  Google Scholar 

  47. Liu Y., Zhong W., Tang Y. On the relationships between different vortex identification methods based on local trace criterion [J]. Physics of Fluids, 2021, 33(10): 105116.

    Article  Google Scholar 

  48. Chong M. S., Perry A. E., Cantwell B. J. A general classification of three-dimensional flow fields [J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765–777.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Major Project (Grant No. 2017-II-003-0015), the Aeronautical Science Foundation of China (Grant No. 2018ZB51013) and the Fundamental Research Funds for the Central Universities. The authors also would like to thank Matthieu Dreyer for providing the experimental results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-wei Liu.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Project supported by the National Natural Science Foundation of China (Grant No. 51976006, 52106039).

Biography: Nan Xie (1995-), Male, Ph. D. Candidate

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, N., Tang, Ym. & Liu, Yw. High-fidelity numerical simulation of unsteady cavitating flow around a hydrofoil. J Hydrodyn 35, 1–16 (2023). https://doi.org/10.1007/s42241-023-0014-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-023-0014-2

Key words

Navigation