Skip to main content
Log in

A review of cavitation in tip-leakage flow and its control

  • Review Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The tip-leakage vortex (TLV) cavitation is a challenging issue for a variety of axial hydraulic turbines and pumps from both technical and scientific viewpoints. The flow characteristics of the TLV cavitation were widely studied in the past decades, but the knowledge about the tip-leakage cavitating flow is still limited. The present paper reviews the progresses in the researches of the TLV cavitation, including the numerical methods for the TLV cavitation, the flow characteristics of the TLV, the influences of the TLV cavitation on the local flow field and the control strategies of the TLV cavitation. It is indicated that the non-condensable gas may play an important role in the development of the TLV cavitation, and this fact should be considered during a careful simulation of the TLV cavitation. It is also suggested that the development of the TLV cavitation will significantly influence the distributions of the vorticity and the turbulence kinetic energy. Due to the complexity of the TLV cavitation, it is still an open question how to suppress the TLV cavitation in a simple but effective way. Finally, based on these understandings, some advanced topics for the future work are suggested to further promote the study of the TLV cavitation, for a deeper knowledge about the TLV cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang D. S., Shi W. D., Chen B. et al. Unsteady flow analysis and experimental investigation of axial-flow pump [J]. Journal of Hydrodynamics, 2010, 22(1): 35–43.

    Article  Google Scholar 

  2. Wang J., Cheng H., Xu S. et al. Performance of cavitation flow and its induced noise of different jet pump cavitation reactors [J]. Ultrasonics Sonochemistry, 2019, 55: 322–331.

    Article  Google Scholar 

  3. Lin F., Chen J.. Oscillatory tip leakage flows and stability enhancement in axial compressors [J]. International Journal of Rotating Machinery, 2018, ID9076472.

  4. Zhang D., Shi W., Pan D. et al. Numerical and experimental investigation of tip leakage vortex cavitation patterns and mechanisms in an axial flow pump [J]. Journal of Fluids Engineering, 2015, 137(12): 121103.

    Article  Google Scholar 

  5. Kim S., Choi C., Kim J. et al. Tip clearance effects on cavitation evolution and head breakdown in turbopump inducer [J]. Journal of Propulsion and Power, 2013, 29(6): 1357–1366.

    Article  Google Scholar 

  6. Sentyabov A. V., Timoshevskiy M. V., Pervunin K. S. Gap cavitation in the end clearance of a guide vane of a hydroturbine: Numerical and experimental investigation [J]. Journal of Engineering Thermophysics, 2019, 28(1): 67–83.

    Article  Google Scholar 

  7. Luo X. W., Ji B., Tsujimoto Y. A review of cavitation in hydraulic machinery [J]. Journal of Hydrodynamics, 2016, 28(3): 335–358.

    Article  Google Scholar 

  8. Hong F., Yu W., Zhang F. Numerical investigation of turbulent cavitating flow in an axial flow pump using a new transport-based model [J]. Journal of Mechanical Science and Technology, 2020, 34(2): 745–756.

    Article  Google Scholar 

  9. Han C. Z., Xu S., Cheng H. Y. et al. LES method of the tip clearance vortex cavitation in a propelling pump with special emphasis on the cavitation-vortex interaction [J]. Journal of Hydrodynamics, 2020, 32(6): 1212–1216.

    Article  Google Scholar 

  10. Huang B., Qiu S. C., Li X. B. et al. A review of transient flow structure and unsteady mechanism of cavitating flow [J]. Journal of Hydrodynamics, 2019, 31(3): 429–444.

    Article  Google Scholar 

  11. Lu L., Pan G., Wei J. et al. Numerical simulation of tip clearance impact on a pumpjet propulsor [J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(3): 219–227.

    Article  Google Scholar 

  12. Tan D., Li Y., Wilkes I. et al. Experimental investigation of the role of large scale cavitating vortical structures in performance breakdown of an axial waterjet pump [J]. Journal of Fluids Engineering, 2015, 137(11): 111301.

    Article  Google Scholar 

  13. Peng X. X., Zhang L. X., Wang B. L. et al. Study of tip vortex cavitation inception and vortex singing [J]. Journal of Hydrodynamics, 2019, 31(6): 1170–1177.

    Article  Google Scholar 

  14. Zhao M. S., Zhao W. W., Wan D. C. Numerical simulations of propeller cavitation flows based on OpenFOAM [J]. Journal of Hydrodynamics, 2020, 32(6): 1071–1079.

    Article  Google Scholar 

  15. Wang Q. X., Yang Y. X., Tan D. S. et al. Non-spherical multi-oscillations of a bubble in a compressible liquid [J]. Journal of Hydrodynamics, 2014, 26(6): 848–855.

    Article  Google Scholar 

  16. Guo Q., Huang X., Qiu B. Numerical investigation of the blade tip leakage vortex cavitation in a waterjet pump [J]. Ocean Engineering, 2019, 187: 106170.

    Article  Google Scholar 

  17. Shi L., Zhang D., Jin Y. et al. A study on tip leakage vortex dynamics and cavitation in axial-flow pump [J]. Fluid Dynamics Research, 2017, 49(3): 035504.

    Article  Google Scholar 

  18. Park J., Seong W. Novel scaling law for estimating propeller tip vortex cavitation noise from model experiment [J]. Journal of Hydrodynamics, 2017, 29(6): 962–971.

    Article  Google Scholar 

  19. Shamsuddeen M. M., Park J., Choi Y. S. et al. Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner [J]. Renewable Energy, 2020, 162: 861–876.

    Article  Google Scholar 

  20. Shi G., Liu Z., Xiao Y. et al. Tip leakage vortex trajectory and dynamics in a multiphase pump at off-design condition [J]. Renewable Energy, 2020, 150: 703–711.

    Article  Google Scholar 

  21. Shen X., Zhang D., Xu B. et al. Experimental investigation of the transient patterns and pressure evolution of tip leakage vortex and induced-vortices cavitation in an axial flow pump [J]. Journal of Fluids Engineering, 2020, 142(10): 101206.

    Article  Google Scholar 

  22. Xu S., L. P., Ji B. et al. Vortex dynamic characteristics of unsteady tip clearance cavitation in a waterjet pump determined with different vortex identification methods [J]. Journal of Mechanical Science and Technology, 2019, 33(12): 5901–5912.

    Article  Google Scholar 

  23. Wu Y., An G., Wu J. et al. Experimental investigation of flow characteristic of tip leakage flow in an axial flow compressor rotor [J]. Proceedings of the Institution of Mechanical Engineers Part A-Journal of Power and Energy, 2015, 229(2): 112–126.

    Article  Google Scholar 

  24. Xu B., Shen X., Zhang D. et al. Experimental and numerical investigation on the tip leakage vortex cavitation in an axial flow pump with different tip clearances [J]. Processes, 2019, 7(12): 935.

    Article  Google Scholar 

  25. Yuan J., Chen Y., Wang L. et al. Dynamic analysis of cavitation tip vortex of pump-jet propeller based on DES [J]. Applied Sciences-Basel, 2020, 10(17): 5998.

    Article  Google Scholar 

  26. Zhang D., Shi L., Zhao R. et al. Study on unsteady tip leakage vortex cavitation in an axial-flow pump using an improved filter-based model [J]. Journal of Mechanical Science and Technology, 2017, 31(2): 659–667.

    Article  Google Scholar 

  27. Zhao Y., Jiang Y., Cao X. et al. Study on tip leakage vortex cavitating flows using a visualization method [J]. Modern Physics Letters B, 2018, 32(1): 1850003.

    Article  Google Scholar 

  28. Roussopoulos K., Monkewitz P. A. Measurements of tip vortex characteristics and the effect of an anti-cavitation lip on a model kaplan turbine blade [J]. Flow, Turbulence and Combustion, 2000, 64(2): 119–144.

    Article  MATH  Google Scholar 

  29. Miorini R. L., Wu H., Katz J. The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump [J]. Journal of Turbomachinery, 2012, 134(3): 031012.

    Article  Google Scholar 

  30. Dreyer M.. Mind the gap: Tip leakage vortex dynamics and cavitation in axial turbine [D]. Doctoral Thesis, Lausanne, Switzerland: École polytechnique fédérale de Lausanne, 2015.

  31. Adamczyk J. J., Celestina M. L., Greitzer E. M. The role of tip clearance in high-speed fan stall [J]. Journal of Turbomachinery, 1993, 115(1): 28–39.

    Article  Google Scholar 

  32. Furukawa M., Inoue M., Saiki K. et al. The role of tip leakage vortex breakdown in compressor rotor aerodynamics [J]. Journal of Turbomachinery, 1999, 121(3): 469–480.

    Article  Google Scholar 

  33. Heyes F. J. G., Hodson H. P., Dailey G. M. The effect of blade tip geometry on the tip leakage flow in axial turbine cascades [J]. Journal of Turbomachinery, 1992, 114(3): 643–651.

    Article  Google Scholar 

  34. Inoue M., Kuroumaru M. Structure of tip clearance flow in an isolated axial compressor rotor [J]. Journal of Turbomachinery, 1989, 111(3): 250–256.

    Article  Google Scholar 

  35. Miorini R. L., Wu H., Katz J. The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump [J]. Journal of Turbomachinery, 2011, 134(3): 031018.

    Article  Google Scholar 

  36. You D., Wang M., Moin P. et al. Vortex dynamics and low-pressure fluctuations in the tip-clearance flow [J]. Journal of Fluids Engineering, 2007, 129(8): 1002–1014.

    Article  Google Scholar 

  37. You D., Wang M., Moin P. et al. Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade [J]. Physics of Fluids, 2006, 18(10): 105102.

    Article  Google Scholar 

  38. You D., Mittal R., Wang M. et al. Computational methodology for large-eddy simulation of tip-clearance flows [J]. AIAA Journal, 2004, 42(2): 271–279.

    Article  Google Scholar 

  39. You D., Wang M., Moin P. et al. Large-eddy simulation analysis of mechanisms for viscous losses in a turbomachinery tip-clearance flow [J]. Journal of Fluid Mechanics, 2007, 586: 177–204.

    Article  MATH  Google Scholar 

  40. Muthanna C., Devenport W. J. Wake of a compressor cascade with tip gap. Part 1: Mean flow and turbulence structure [J]. AIAA Journal, 2004, 42(11): 2320–2331.

    Article  Google Scholar 

  41. Wenger C. W., Devenport W. J., Wittmer K. S. et al. Wake of a compressor cascade with tip gap. Part 3: Two-point statistics [J]. AIAA Journal, 2004, 42(11): 2341–2346.

    Article  Google Scholar 

  42. Zhao Y., Wang G., Jiang Y. et al. Numerical analysis of developed tip leakage cavitating flows using a new transport-based model [J]. International Communications in Heat and Mass Transfer, 2016, 78: 39–47.

    Article  Google Scholar 

  43. Dreyer M., Decaix J., Münch-Alligné C. et al. Mind the gap-tip leakage vortex in axial turbines [J]. IOP Conference Series: Earth and Environmental Science, 2014, 22(5): 052023.

    Google Scholar 

  44. Russell P. S., Barbaca L., Venning J. A. et al. Nucleation effects on tip-gap cavitation [C]. 22nd Australasian Fluid Mechanics Conference AFMC2020, Brisbane, Australia, 2020.

  45. Gaggero S., Tani G., Viviani M. et al. A study on the numerical prediction of propellers cavitating tip vortex [J]. Ocean Engineering, 2014, 92: 137–161.

    Article  Google Scholar 

  46. Decaix J., Dreyer M., Balarac G. et al. RANS computations of a confined cavitating tip-leakage vortex [J]. European Journal of Mechanics-B/Fluids, 2018, 67: 198–210.

    Article  MathSciNet  MATH  Google Scholar 

  47. Guo Q., Zhou L., Wang Z. et al. Numerical simulation for the tip leakage vortex cavitation [J]. Ocean Engineering, 2018, 151: 71–81.

    Article  Google Scholar 

  48. Smirnov P. E., Menter F. R. Sensitization of the SST turbulence model to rotation and curvature by applying the spalart-Shur correction term [J]. Journal of Turbomachinery, 2009, 131(4): 041010.

    Article  Google Scholar 

  49. Liu Z. H., Wang B. L., Peng X. X. et al. Calculation of tip vortex cavitation flows around three-dimensional hydrofoils and propellers using a nonlinear k-ε turbulence model [J]. Journal of Hydrodynamics, 2016, 28(2): 227–237.

    Article  Google Scholar 

  50. Zhang D. S., Shi L., Shi W. D. et al. Numerical analysis of unsteady tip leakage vortex cavitation cloud and unstable suction-side-perpendicular cavitating vortices in an axial flow pump [J]. International Journal of Multiphase Flow, 2015, 77: 244–259.

    Article  Google Scholar 

  51. Wang B. L., Liu Z. H., Li H. Y. et al. On the numerical simulations of vortical cavitating flows around various hydrofoils [J]. Journal of Hydrodynamics, 2017, 29(6): 926–938.

    Article  Google Scholar 

  52. Zhang D., Shi W., Pan D. et al. Numerical and experimental investigation of tip leakage vortex cavitation patterns and mechanisms in an axial flow pump [J]. Journal of Fluids Engineering, 2015, 137(12): 121103.

    Article  Google Scholar 

  53. Li L. M., Hu D. Q., Liu Y. C. et al. Large eddy simulation of cavitating flows with dynamic adaptive mesh refinement using OpenFOAM [J]. Journal of Hydrodynamics, 2020, 32(2): 398–409.

    Article  Google Scholar 

  54. Liu D. M., Liu S. H., Wu Y. L. et al. LES numerical simulation of cavitation bubble shedding on ale 25 and ale 15 hydrofoils [J]. Journal of Hydrodynamics, 2009, 21(6): 807–813.

    Article  Google Scholar 

  55. Long X. P., Long Y., Wang W. T. et al. Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES [J]. Journal of Hydrodynamics, 2018, 30(2): 369–372.

    Article  Google Scholar 

  56. Lu N. X., Bensow R. E., Bark G. LES of unsteady cavitation on the delft twisted foil [J]. Journal of Hydrodynamics, 2010, 22(5 Suppl. 1): 742–749.

    Google Scholar 

  57. Asnaghi A., Bensow R. E. Impact of leading edge roughness in cavitation simulations around a twisted foil [J]. Fluids, 2020, 5(4): 243.

    Article  Google Scholar 

  58. Pendar M. R., Esmaeilifar E., Roohi E. LES study of unsteady cavitation characteristics of a 3-D hydrofoil with wavy leading edge [J]. International Journal of Multiphase Flow, 2020, 132: 103415.

    Article  MathSciNet  Google Scholar 

  59. Qu S., Li J., Cheng H. et al. LES investigation on vortex dynamics of transient sheet/cloud cavitating flow using different vortex identification methods [J]. Modern Physics Letters B, 2020, 34(Suppl. 1): 2150111.

    MathSciNet  Google Scholar 

  60. Liu M., Tan L., Cao S. Cavitation-vortex-turbulence interaction and one-dimensional model prediction of pressure for hydrofoil ALE15 by large eddy simulation [J]. Journal of Fluids Engineering, 2019, 141(2): 021103.

    Article  Google Scholar 

  61. Long Y., Long X., Ji B. et al. Verification and validation of large eddy simulation of attached cavitating flow around a Clark-Y hydrofoil [J]. International Journal of Multiphase Flow, 2019, 115: 93–107.

    Article  MathSciNet  Google Scholar 

  62. Wang Z. Y., Huang X. B., Cheng H. Y. et al. Some notes on numerical simulation of the turbulent cavitating flow with a dynamic cubic nonlinear sub-grid scale model in OpenFOAM [J]. Journal of Hydrodynamics, 2020, 32(4): 790–794.

    Article  Google Scholar 

  63. Li X., Li X. All-speed Roe scheme for the large eddy simulation of homogeneous decaying turbulence [J]. International Journal of Computational Fluid Dynamics, 2016, 30(1): 69–78.

    Article  MathSciNet  Google Scholar 

  64. Boudet J., Cahuzac A., Kausche P. et al. Zonal large-eddy simulation of a fan tip-clearance flow, with evidence of vortex wandering [J]. Journal of Turbomachinery, 2015, 137(6): 061001.

    Article  Google Scholar 

  65. Gao Y., Liu Y. A flow model for tip leakage flow in turbomachinery using a square duct with a longitudinal slit [J]. Aerospace Science and Technology, 2019, 95: 105460.

    Article  Google Scholar 

  66. Liu Y., Zhong L., Lu L. Comparison of DDES and URANS for unsteady tip leakage flow in an axial compressor rotor [J]. Journal of Fluids Engineering, 2019, 141(12): 121405.

    Article  Google Scholar 

  67. Bai X. R., Cheng H. Y., Ji B. et al. Large eddy simulation of tip leakage cavitating flow focusing on cavitationvortex interaction with Cartesian cut-cell mesh method [J]. Journal of Hydrodynamics, 2018, 30(4): 750–753.

    Article  Google Scholar 

  68. Cheng H., Long X., Ji B. et al. LES investigation of the influence of cavitation on flow patterns in a confined tip-leakage flow [J]. Ocean Engineering, 2019, 186: 106115.

    Article  Google Scholar 

  69. Bensow R. E., Bark G. Implicit LES predictions of the cavitating flow on a propeller [J]. Journal of Fluids Engineering, 2010, 132(4): 041302.

    Article  Google Scholar 

  70. Yilmaz N., Atlar M., Khorasanchi M. An improved mesh adaption and refinement approach to cavitation simulation (MARCS) of propellers [J]. Ocean Engineering, 2019, 171: 139–150.

    Article  Google Scholar 

  71. Peng X. X., Xu L. H., Liu Y. W. et al. Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil [J]. Journal of Hydrodynamics, 2017, 29(6): 939–953.

    Article  Google Scholar 

  72. Zhang L. X., Zhang N., Peng X. X. et al. A review of studies of mechanism and prediction of tip vortex cavitation inception [J]. Journal of Hydrodynamics, 2015, 27(4): 488–495.

    Article  Google Scholar 

  73. Amini A., Reclari M., Sano T. et al. On the physical mechanism of tip vortex cavitation hysteresis [J]. Experiments in Fluids, 2019, 60(7): 118.

    Article  Google Scholar 

  74. Oweis G. F., van der Hout I. E., Iyer C. et al. Capture and inception of bubbles near line vortices [J]. Physics of Fluids, 2005, 17(2): 022105.

    Article  MATH  Google Scholar 

  75. Arndt R. E. A. Cavitation in vortical flows [J]. Annual Review of Fluid Mechanics, 2002, 34: 143–175.

    Article  MathSciNet  MATH  Google Scholar 

  76. Caupin F., Herbert E. Cavitation in water: A review [J]. Comptes Rendus Physique, 2006, 7(9–10): 1000–1017.

    Article  Google Scholar 

  77. Taleyarkhan R. P., West C. D., Cho J. S. et al. Evidence for nuclear emissions during acoustic cavitation [J]. Science, 2002, 295(5561): 1868–1873.

    Article  Google Scholar 

  78. Asnaghi A., Svennberg U., Bensow R. E. Analysis of tip vortex inception prediction methods [J]. Ocean Engineering, 2018, 167: 187–203.

    Article  Google Scholar 

  79. Chen L., Zhang L., Peng X. et al. Influence of water quality on the tip vortex cavitation inception [J]. Physics of Fluids, 2019, 31(2): 023303.

    Article  Google Scholar 

  80. Schnerr G. H., Sauer J. Physical and numerical modeling of unsteady cavitation dynamics [C]. Proceedings of 4th international Conference on Multi-Phase Flow, San Francisco, CA, USA, 2001.

  81. Zwart P. J., Gerber A. G., Belamri T. A two-phase flow model for predicting cavitation dynamics [C]. Proceedings of the fifth international conference on multiphase flow, Yokohama, Japan, 2004.

  82. Mithun M. G., Koukouvinis P., Karathanassis I. K. et al. Numerical simulation of three-phase flow in an external gear pump using immersed boundary approach [J]. Applied Mathematical Modelling, 2019, 72: 682–699.

    Article  MathSciNet  MATH  Google Scholar 

  83. Stavropoulos Vasilakis E., Kyriazis N. et al. Cavitation induction by projectile impacting on a water jet [J]. International Journal of Multiphase Flow, 2019, 114: 128–139.

    Article  MathSciNet  Google Scholar 

  84. Egerer C. P., Hickel S., Schmidt S. J. et al. Large-eddy simulation of turbulent cavitating flow in a micro channel [J]. Physics of Fluids, 2014, 26(8): 085102.

    Article  Google Scholar 

  85. Ma J., Hsiao C. T., Chahine G. L. A physics based multiscale modeling of cavitating flows [J]. Computers and Fluids, 2017, 145: 68–84.

    Article  MathSciNet  MATH  Google Scholar 

  86. Hsiao C. T., Ma J., Chahine G. L. Multiscale two-phase flow modeling of sheet and cloud cavitation [J]. International Journal of Multiphase Flow, 2017, 90: 102–117.

    Article  MathSciNet  Google Scholar 

  87. Yakubov S., Cankurt B., Abdel-Maksoud M. et al. Hybrid MPI/OpenMP parallelization of an Euler-Lagrange approach to cavitation modelling [J]. Computers and Fluids, 2013, 80: 365–371.

    Article  MathSciNet  MATH  Google Scholar 

  88. Cheng H., Long X., Ji B. et al. A new Euler-Lagrangian cavitation model for tip-vortex cavitation with the effect of non-condensable gas [J]. International Journal of Multiphase Flow, 2021, 134: 103441.

    Article  MathSciNet  Google Scholar 

  89. Xu M., Cheng H., Ji B. et al. LES of tip-leakage cavitating flow with special emphasis on different tip clearance sizes by a new Euler-Lagrangian cavitation model [J]. Ocean Engineering, 2020, 213: 107661.

    Article  Google Scholar 

  90. Dreyer M., Decaix J., Munch-Alligne C. et al. Mind the gap: A new insight into the tip leakage vortex using stereo-PIV [J]. Experiments in Fluids, 2014, 55(11): 1894.

    Article  Google Scholar 

  91. Zierke W. C., Straka W. A. Flow visualization and the three-dimensional flow in an axial-flow pump [J]. Journal of Propulsion and Power, 1996, 12(2): 250–259.

    Article  Google Scholar 

  92. Inoue M., Kuroumaru M., Fukuhara M. Behavior of tip leakage flow behind an axial compressor rotor [J]. Journal of Engineering for Gas Turbines and Power, 1986, 108(1): 7–14.

    Article  Google Scholar 

  93. Storer J. A., Cumpsty N. A tip leakage flow in axial compressors [J]. Journal of Turbomachinery, 1991, 113(2): 252–259.

    Article  Google Scholar 

  94. Boulon O., Callenaere M., Franc J. P. et al. An experimental insight into the effect of confinement on tip vortex cavitation of an elliptical hydrofoil [J]. Journal of Fluid Mechanics, 1999, 390: 1–24.

    Article  MATH  Google Scholar 

  95. McCormick B. W. Jr. On cavitation produced by a vortex trailing from a lifting surface [J]. Journal of Basic Engineering, 1962, 84(3): 369–378.

    Article  MathSciNet  Google Scholar 

  96. Stinebring D. R., Farrell K. J., Billet M. L. The structure of a three-dimensional tip vortex at high Reynolds numbers [J]. Journal of Fluids Engineering, 1991, 113(3): 496–503.

    Article  Google Scholar 

  97. Fruman D. H., Cerrutti P., Pichon T. et al. Effect of hydrofoil planform on tip vortex roll-up and cavitation [J]. Journal of Fluids Engineering, 1995, 117(1): 162–169.

    Article  Google Scholar 

  98. Huang R. F., Du T. Z., Wang Y. W. et al. Numerical investigations of the transient cavitating vortical flow structures over a flexible NACA66 hydrofoil [J]. Journal of Hydrodynamics, 2020, 32(5): 865–878.

    Article  Google Scholar 

  99. Long X. P., Zuo D., Cheng H. et al. Large eddy simulation of the transient cavitating vortical flow in a jet pump with special emphasis on the unstable limited operation stage [J]. Journal of Hydrodynamics, 2020, 32(2): 345–360.

    Article  Google Scholar 

  100. Yang D. D., Yu A., Ji B. et al. Numerical analyses of ventilated cavitation over a 2-D NACA0015 hydrofoil using two turbulence modeling methods [J]. Journal of Hydrodynamics, 2018, 30(2): 345–356.

    Article  Google Scholar 

  101. Ji B., Luo X., Arndt R. E. A. et al. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction [J]. Ocean Engineering, 2014, 87: 64–77.

    Article  Google Scholar 

  102. Wu J. Z., Ma H. Y., Zhou M. D. Vorticity and vortex dynamics [M]. Berlin Heidelberg, Germany: Springer, 2006.

    Book  Google Scholar 

  103. Ji B., Luo X. W., Arndt R. E. A. et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J]. International Journal of Multiphase Flow, 2015, 68: 121–134.

    Article  MathSciNet  Google Scholar 

  104. Laberteaux K. R., Ceccio S. L. Partial cavity flows. Part 2. Cavities forming on test objects with spanwise variation [J]. Journal of Fluid Mechanics, 2001, 431: 43–63.

    Article  MATH  Google Scholar 

  105. Huang B., Zhao Y., Wang G. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows [J]. Computers and Fluids, 2014, 92: 113–124.

    Article  MATH  Google Scholar 

  106. Cheng H. Y., Bai X. R., Long X. P. et al. Large eddy simulation of the tip-leakage cavitating flow with an insight on how cavitation influences vorticity and turbulence [J]. Applied Mathematical Modelling, 2020, 77: 788–809.

    Article  MathSciNet  MATH  Google Scholar 

  107. Li X., Li B., Yu B. et al. Calculation of cavitation evolution and associated turbulent kinetic energy transport around a NACA66 hydrofoil [J]. Journal of Mechanical Science and Technology, 2019, 33(3): 1231–1241.

    Article  MathSciNet  Google Scholar 

  108. Chen T., Huang B., Wang G. et al. Numerical study of cavitating flows in a wide range of water temperatures with special emphasis on two typical cavitation dynamics [J]. International Journal of Heat and Mass Transfer, 2016, 101: 886–900.

    Article  Google Scholar 

  109. You D., Wang M., Moin P. et al. Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade [J]. Physics of Fluids, 2006, 18(10): 105102.

    Article  Google Scholar 

  110. Zhang D., Shi W., van Esch B. P. M. et al. Numerical and experimental investigation of tip leakage vortex trajectory and dynamics in an axial flow pump [J]. Computers and Fluids, 2015, 112: 61–71.

    Article  Google Scholar 

  111. Gopalan S., Katz J. Flow structure and modeling issues in the closure region of attached cavitation [J]. Physics of Fluids, 2000, 12(4): 895–911.

    Article  MATH  Google Scholar 

  112. Goto A. Three-dimensional flow and mixing in an axial-flow compressor with different rotor tip clearances [J]. Journal of Turbomachinery, 1992, 114(3): 675–685.

    Article  Google Scholar 

  113. Decaix J., Balarac G., Dreyer M. et al. RANS and LES computations of the tip-leakage vortex for different gap widths [J]. Journal of Turbulence, 2015, 16(4): 309–341.

    Article  Google Scholar 

  114. Svennberg U., Asnaghi A., Gustafsson R. et al. Experimental analysis of tip vortex cavitation mitigation by controlled surface roughness [J]. Journal of Hydrodynamics, 2020, 32(6): 1059–1070.

    Article  Google Scholar 

  115. Zhang H., Shi W. D., Chen B. et al. Experimental study of flow field in interference area between impeller and guide vane of axial flow pump [J]. Journal of Hydrodynamics, 2014, 26(6): 894–901.

    Article  Google Scholar 

  116. Azzam T., Paridaens R., Ravelet F. et al. Experimental investigation of an actively controlled automotive cooling fan using steady air injection in the leakage gap [J]. Proceedings of the Institution of Mechanical Engineers Part A-Journal of Power and Energy, 2017, 231(A1): 59–67.

    Article  Google Scholar 

  117. Souders William G., Platzer Gregory P. et al. Tip vortex cavitation characteristics and delay of inception on a three-dimensional hydrofoil [R]. Bethesda, MD, USA: David W. Taylor Naval Ship Research and Development Center, 1981.

    Google Scholar 

  118. Fruman D. H., Aflalo S. S. Tip vortex cavitation inhibition by drag-reducing polymer solutions [J]. Journal of Fluids Engineering, 1989, 111(2): 211–216.

    Article  Google Scholar 

  119. Chahine G. L., Frederick G. F., Bateman R. D. Propeller tip vortex cavitation suppression using selective polymer injection [J]. Journal of Fluids Engineering, 1993, 115(3): 497–503.

    Article  Google Scholar 

  120. Rivetti A., Angulo M., Lucino C. et al. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model [C]. 27th Iahr Symposium on Hydraulic Machinery and Systems, Montreal, Canada, 2014.

  121. Chang N., Ganesh H., Yakushiji R. et al. Tip vortex cavitation suppression by active mass injection [J]. Journal of Fluids Engineering, 2011, 133(11): 111301.

    Article  Google Scholar 

  122. Li J., Du J., Nie C. et al. Review of tip air injection to improve stall margin in axial compressors [J]. Progress in Aerospace Sciences, 2019, 106: 15–31.

    Article  Google Scholar 

  123. Bae J., Tan C., Breuer K. Control of tip clearance flows in axial compressors [C]. Fluids 2000 Conference and Exhibit, Denver, CO, USA, 2000.

  124. Behr T., Kalfas A. I., Abhari R. S. Control of rotor tip leakage through cooling injection from the casing in a high-work turbine [J]. Journal of Turbomachinery, 2008, 130(3): 031014.

    Article  Google Scholar 

  125. Gbadebo S. A., Cumpsty N. A. et al. Control of three-dimensional separations in axial compressors by tailored boundary layer suction [J]. Journal of Turbomachinery, 2008, 130(1): 011004.

    Article  Google Scholar 

  126. Peacock R. E. Boundary-layer suction to eliminate corner separation in cascades of aerofoils [M]. London, Uk: Citeseer, 1965.

    Google Scholar 

  127. Chen S. W., Sun S. J., Xu H. et al. Experimental study of the impact of hole-type suction on the flow characteristics in a high-load compressor cascade with a clearance [J]. Experimental Thermal and Fluid Science, 2013, 51: 220–226.

    Article  Google Scholar 

  128. Mao X., Liu B., Tang T. Effect of casing aspiration on the tip leakage flow in the axial flow compressor cascade [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2017, 232(3): 225–239.

    Google Scholar 

  129. Carter C., Guillot S., Ng W. et al. Aerodynamic performance of a high-turning compressor stator with flow control [C]. 37th Joint Propulsion Conference and Exhibit: American Institute of Aeronautics and Astronautics, Salt Lake City, UT, USA, 2001.

  130. Marty J., Castillon L., Boniface J. C. et al.. Numerical and experimental investigations of flow control in axial compressors [J]. Aerospace Lab, 2013, (6): 1–13.

  131. Tiainen J., Grönman A., Jaatinen-Värri A. et al. Flow control methods and their applicability in low-reynolds-number centrifugal compressors-A review [J]. International Journal of Turbomachinery, Propulsion and Power, 2017, 3(1): 2.

    Article  Google Scholar 

  132. Bremond N., Arora M., Ohl C. D. et al. Controlled multibubble surface cavitation [J]. Physical Review Letters, 2006, 96(22): 224501.

    Article  Google Scholar 

  133. Kawanami Y., Kato H., Yamaguchi H. et al. Mechanism and control of cloud cavitation [J]. Journal of Fluids Engineering, 1997, 119(4): 788–794.

    Article  Google Scholar 

  134. Kadivar E., Moctar O. E., Javadi K. Investigation of the effect of cavitation passive control on the dynamics of unsteady cloud cavitation [J]. Applied Mathematical Modelling, 2018, 64: 333–356.

    Article  MathSciNet  MATH  Google Scholar 

  135. Kadivar E., Timoshevskiy M. V., Nichik M. Y. et al. Control of unsteady partial cavitation and cloud cavitation in marine engineering and hydraulic systems [J]. Physics of Fluids, 2020, 32(5): 052108.

    Article  Google Scholar 

  136. Lee Y., Kang M., Kim H. et al. Passive control techniques to alleviate supersonic cavity flow oscillation [J]. Journal of Propulsion and Power, 2008, 24(4): 697–703.

    Article  Google Scholar 

  137. Ulas A. Passive flow control in liquid-propellant rocket engines with cavitating venturi [J]. Flow Measurement and Instrumentation, 2006, 17(2): 93–97.

    Article  Google Scholar 

  138. Senel C. B., Maral H., Kavurmacioglu L. A. et al. An aerothermal study of the influence of squealer width and height near a HP turbine blade [J]. International Journal of Heat and Mass Transfer, 2018, 120: 18–32.

    Article  Google Scholar 

  139. Camci C., Dey D., Kavurmacioglu L. Aerodynamics of tip leakage flows near partial squealer rims in an axial flow turbine stage [J]. Journal of Turbomachinery, 2005, 127(1): 14–24.

    Article  Google Scholar 

  140. Cheon J. H., Lee S. W. Tip leakage aerodynamics over the cavity squealer tip equipped with full coverage winglets in a turbine cascade [J]. International Journal of Heat and Fluid Flow, 2015, 56: 60–70.

    Article  Google Scholar 

  141. Mei L., Zhou J.. Effects of blade tip foil thickening on tip vortexes in ducted propeller [C]. 3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015), Guangzhou, China, 2015.

  142. Guo Q., Zhou L., Wang Z. Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil [J]. Renewable Energy, 2016, 99: 390–397.

    Article  Google Scholar 

  143. Wu S. Q., Shi W. D., Zhang D. S. et al. Influence of blade tip rounding on tip leakage vortex cavitation of axial flow pump [J]. IOP Conference Series: Materials Science and Engineering, 2013, 52(6): 062011.

    Article  Google Scholar 

  144. Liu Y., Tan L. Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy [J]. Energy, 2018, 155: 448–461.

    Article  Google Scholar 

  145. Smith G. D. J., Cumpsty N. A. Flow phenomena in compressor casing treatment [J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(3): 532–541.

    Article  Google Scholar 

  146. Kang D. H., Arimoto Y., Yonezawa K. et al. Suppression of cavitation instabilities in an inducer by circumferential groove and explanation of higher frequency components [J]. International Journal of Fluid Machinery and Systems, 2010, 3(2): 137–149.

    Article  Google Scholar 

  147. Hah C. Toward optimum configuration of circumferential groove casing treatment in transonic compressor rotors [C]. ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, Hamamatsu, Japan, 2011, 1823–1832.

  148. Choi M. Effects of circumferential casing grooves on the performance of a transonic axial compressor [J]. International Journal of Turbo and Jet-Engines, 2015, 32(4): 361.

    Google Scholar 

  149. Stephens J., Corke T. Morris scott: Control of a Turbine tip leakage vortex using casing vortex generators [C]. 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition: American Institute of Aeronautics and Astronautics, Orlando, Florida, USA, 2009.

  150. Andichamy V. C., Khokhar G. T., Camci C. An experimental study of using vortex generators as tip leakage flow interrupters in an axial flow turbine stage [C]. ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Osol, Norway, 2018.

  151. Dey D., Camci C. Aerodynamic tip desensitization of an axial turbine rotor using tip platform extensions [C]. ASME Turbo Expo 2001: Power for Land, Sea, and Air, New Orleans, Louisiana, USA, 2001.

  152. Amini A., Reclari M., Sano T. et al. Suppressing tip vortex cavitation by winglets [J]. Experiments in Fluids, 2019, 60(11): 159.

    Article  Google Scholar 

  153. Dreyer M., Decaix J., Munch-Alligné C. et al. Mind the gap: A new insight into the tip leakage vortex using stereo-PIV [J]. Experiments in Fluids, 2014, 55(11): 1849.

    Article  Google Scholar 

  154. Cheng H., Long X., Ji B. et al. Suppressing tip-leakage vortex cavitation by overhanging grooves [J]. Experiments in Fluids, 2020, 61(7): 159.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the China Postdoctoral Science Foundation (Grant No. 2020M682471).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ji.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 51822903, 11772239).

Biography: Huai-yu Cheng (1993-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Hy., Ji, B., Long, Xp. et al. A review of cavitation in tip-leakage flow and its control. J Hydrodyn 33, 226–242 (2021). https://doi.org/10.1007/s42241-021-0022-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0022-z

Key words

Navigation