Skip to main content

Advertisement

Log in

Vortex identification methods in marine hydrodynamics

  • Special Column on the 3rd Symposium on Computational Marine Hydrodynamics (Guest Editor De-Cheng Wan)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

In this paper, several commonly used vortex identification methods for marine hydrodynamics are revisited. In order to extract and analyse the vortical structures in marine hydrodynamics, the Q, λ2 — criterion and modified normalized Liutex/Rortex \(\it {\tilde\Omega_R}\) method are utilized for vortex identification for propeller open water test, ship drag test, ship propeller-rudder interaction, VIV of a marine riser and VIM of a Spar platform. The limitation of Q and λ2 — criterion is discussed. The Liutex/Rortex \(\it {\tilde\Omega_R}\) method is promising for convenient and accurate vortex identification and visualization. However, care should be taken when choosing the small parameter b0 for \(\it {\tilde\Omega_R}\). We proposed recommended values of b0 for marine hydrodynamic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Felli M., Falchi M. Propeller wake evolution mechanisms in oblique flow conditions [J]. Journal of Fluid Mechanics. 2018, 845: 520–559.

    Article  Google Scholar 

  2. Wang L. Z., Guo C. Y., Su Y. M. et al. A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers [J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 10(2): 212–224.

    Article  Google Scholar 

  3. Xing T., Bhushan S., Stern F. Vortical and turbulent structures for KVLCC2 at drift angle 0, 12, and 30 degrees [J]. Ocean Engineering, 2012, 55: 23–43.

    Article  Google Scholar 

  4. Shen Z., Wan D. C., Carrica P. RANS simulations of free maneuvers with moving rudders and propellers using overset grids in OpenFOAM [C]. SIMMAN Workshop on Verification and Validation of Ship Maneuvering Simulation Methods, Lyngby, Denmark, 2014.

  5. Sakamoto N., Carrica P. M., Stern F. URANS simulations of static and dynamic maneuvering for surface combatant: Part 2. Analysis and validation for local flow characteristics [J]. Journal of Marine Science and Technology, 2012, 17(4): 446–468.

    Article  Google Scholar 

  6. Wang J., Zhao W., Wan D. C. Free maneuvering simulation of ONR tumblehome using overset grid method in naoe-FOAM-SJTU solver [C]. Proceedings of the 31st Symposium on Naval Hydrodynamics, Monterey, California, USA, 2016.

  7. Liang Y., Tao L. Interaction of vortex shedding processes on flow over a deep-draft semi-submersible [J]. Ocean Engineering, 2017, 141: 427–449.

    Article  Google Scholar 

  8. Liu M., Xiao L., Yang J. et al. Parametric study on the vortex-induced motions of semi-submersibles: Effect of rounded ratios of the column and pontoon [J]. Physics of Fluids, 2017, 29(5): 055101.

    Article  Google Scholar 

  9. Zhao W., Zou L., Wan D. et al. Numerical investigation of vortex-induced motions of a paired-column semi-submersible in currents [J]. Ocean Engineering, 2018, 164: 272–283.

    Article  Google Scholar 

  10. Epps B. Review of vortex identification methods [C]. Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, USA, 2017.

  11. Zhang Y., Liu K., Xian H. et al. A review of methods for vortex identification in hydroturbines [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1269–1285.

    Article  Google Scholar 

  12. Jeong J., Hussain F. On the identification of a vortex [J]. Journal of Fluid Mechanics, 1995, 285: 69–94.

    Article  MathSciNet  Google Scholar 

  13. Haller G. An objective definition of a vortex [J]. Journal of Fluid Mechanics, 2005, 525: 1–26.

    Article  MathSciNet  Google Scholar 

  14. Fureby C., Anderson B., Clarke D. et al. Experimental and numerical study of a generic conventional submarine at 10° yaw [J]. Ocean Engineering, 2016, 116: 1–20.

    Article  Google Scholar 

  15. Liu C., Wang Y., Yang Y. et al. New omega vortex identification method [J]. Science China Physics, Mechanics and Astronomy, 2016, 59(8): 684711.

    Article  Google Scholar 

  16. Gao Y., Liu C. Rortex and comparison with eigenvalue-based vortex identification criteria [J]. Physics of Fluids, 2018, 30(8): 085107.

    Article  Google Scholar 

  17. Liu C., Gao Y., Tian S. et al. Rortex-A new vortex vector definition and vorticity tensor and vector decompositions [J]. Physics of Fluids, 2018, 30(3): 035103.

    Article  Google Scholar 

  18. Liu C., Gao Y. S., Dong X. R. et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems [J]. Journal of Hydrodynamics, 2019, 31(2): 205–223.

    Article  Google Scholar 

  19. Dong X., Gao Y., Liu C. New normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(1): 011701.

    Article  Google Scholar 

  20. Liu J., Liu C. Modified normalized Rortex/vortex identification method [J]. Physics of Fluids, 2019, 31(6): 061704.

    Article  Google Scholar 

  21. Wang Y. Q., Gao Y. S., Liu J. M. et al. Explicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decomposition [J]. Journal of Hydrodynamics, 2019, 31(3): 464–474.

    Article  Google Scholar 

  22. Levy Y., Degani D., Seginer A. Graphical visualization of vortical flows by means of helicity [J]. AIAA Journal, 1990, 28(8): 1347–1352.

    Article  Google Scholar 

  23. Miura H., Kida S. Identification of tubular vortices in turbulence [J]. Journal of the Physical Society of Japan, 1997, 66(5): 1331–1334.

    Article  Google Scholar 

  24. Shen Z., Wan D., Carrica P. M. Dynamic overset grids in OpenFOAM with application to KCS self-propulsion and maneuvering [J]. Ocean Engineering, 2015, 108: 287–306.

    Article  Google Scholar 

  25. Wang J., Zou L., Wan D. CFD simulations of free running ship under course keeping control [J]. Ocean Engineering, 2017, 141: 450–464.

    Article  Google Scholar 

  26. Wang J., Zou L., Wan D. Numerical simulations of zigzag maneuver of free running ship in waves by RANS-Overset grid method [J]. Ocean Engineering, 2018, 162: 55–79.

    Article  Google Scholar 

  27. Wang J. H., Zhao W. W., Wan D. C. Development of naoe-FOAM-SJTU solver based on OpenFOAM for marine hydrodynamics [J]. Journal of Hydrodynamics, 2019, 31(1): 1–20.

    Article  Google Scholar 

  28. Sanada Y., Tanimoto K., Takagi K. et al. Trajectories for ONR Tumblehome maneuvering in calm water and waves [J]. Ocean Engineering, 2013, 72: 45–65.

    Article  Google Scholar 

  29. Wang J., Zhao W., Wan D. Simulations of self-propelled fully appended ship model at different speeds [J]. International Journal of Computational Methods, 2019, 16(5): 1840015.

    Article  Google Scholar 

  30. Wang J., Wan D. C. Numerical simulations of viscous flows around jbc ship using different turbulence models [C]. Proceedings of the 11th International Workshop on Ship and Marine Hydrodynamics, Hamburg, Germany, 2019.

  31. Chaplin J. R., Bearman P. W., Huera Huarte F. J. et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current [J]. Journal of Fluids and Structures, 2005, 21(1): 3–24.

    Article  Google Scholar 

  32. Chaplin J. R., Bearman P. W., Cheng Y. et al. Blind predictions of laboratory measurements of vortex-induced vibrations of a tension riser [J]. Journal of Fluids and Structures, 2005, 21(1): 25–40.

    Article  Google Scholar 

  33. Finnigan T., Roddier D. Spar VIM model tests at supercritical reynolds numbers [C]. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA, 2007, 3: 731–740.

Download references

Acknowledgements

This work was supported by the Chang Jiang Scholars Program (Grant No. T2014099), the Shanghai Excellent Academic Leaders Program (Grant No. 17XD1402300) and the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-cheng Wan.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 51909160, 51879159), the National Key Research and Development Program of China (Grant Nos. 2019YFB1704200, 2019YFC0312400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Ww., Wang, Jh. & Wan, Dc. Vortex identification methods in marine hydrodynamics. J Hydrodyn 32, 286–295 (2020). https://doi.org/10.1007/s42241-020-0022-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-020-0022-4

Key words

Navigation