Skip to main content
Log in

Optimal Energy Efficiency Based High-speed Flying Control Method for Hydraulic Quadruped Robot

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Herein, a control method based on the optimal energy efficiency of a hydraulic quadruped robot was proposed, which not only realizes the optimal energy efficiency of flying trot gait but also ensures the stability of high-speed movement. Concretely, the energy consumption per unit distance was adopted as the energy efficiency evaluation index based on the constant pressure oil supply characteristics of the hydraulic system, and the global optimization algorithm was adopted to solve the optimal parameters. Afterward, the gait parameters that affect the energy efficiency of quadruped were analyzed and the mapping relationship between each parameter and energy efficiency was captured, so as to select the optimum combination of energy efficiency parameters, which is significant to improve endurance capability. Furthermore, to ensure the stability of the high-speed flying trot gait motion of the hydraulic quadruped robot, the active compliance control strategy was employed. Lastly, the proposed method was successfully verified by simulations and experiments. The experimental results reveal that the flying trot gait of the hydraulic quadruped robot can be stably controlled at a speed of 2.2 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Raibert, M., Blankespoor, K., Nelson, G., & Playter, R. (2008). Bigdog the rough-terrain quadruped robot. IFAC Proceedings Volumes, 41(2), 10822–10825.

    Article  Google Scholar 

  2. Wooden, D., Malchano, M., Blankespoor, K., Howardy, A., Rizzi, A. A., & Raibert, M. (2010). Autonomous navigation for BigDog. In 2010 IEEE International Conference on Robotics and Automation, Alaska, America, pp. 4736–4741.

  3. Michael, K. (2012). Meet Boston dynamics' LS3-the latest robotic war machine. The Conversation, 03 October.

  4. Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., & Caldwell, D. G. (2011). Design of HyQ–a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6), 831–849.

    Google Scholar 

  5. Hutter, M., Gehring, C., Höpflinger, M. A., Blösch, M., & Siegwart, R. (2014). Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped. IEEE Transactions on Robotics, 30(6), 1427–1440.

    Article  Google Scholar 

  6. Seok, S., Wang, A., Chuah, M. Y., Otten, D., Lang, J., & Kim, S. (2013). Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In 2013 IEEE International Conference on Robotics and Automation , Karlsruhe, Germany, pp. 3307–3312.

  7. Li, T., Zhou, L., Li, Y., Chai, H., & Yang, K. (2020). An energy efficient motion controller based on SLCP for the electrically actuated quadruped robot. Journal of Bionic Engineering, 17, 290–302.

    Article  Google Scholar 

  8. Bi, J., Chen, T., Rong, X. W., Zhang, G. T., Lu, G., Cao, J. X., Jiang, H., & Li, Y. B. (2024). Efficient dynamic locomotion of quadruped robot via adaptive diagonal gait. Journal of Bionic Engineering, 21(1), 126–136.

    Article  Google Scholar 

  9. Nabulsi, S., Sarria, J. F., Montes, H., & Armada, M. A. (2009). High-resolution indirect feet–ground interaction measurement for hydraulic-legged robots. IEEE Transactions on Instrumentation & Measurement, 58(10), 3396–3404.

    Article  Google Scholar 

  10. Hirose, S., Fukuda, Y., Yoneda, K., Nagakubo, A., Tsukagoshi, H., Arikawa, K., et al. (2009). Quadruped walking robots at Tokyo Institute of Technology. IEEE Robotics & Automation Magazine, 16(2), 104–114.

    Article  Google Scholar 

  11. Wait, K. W., & Goldfarb, M. (2014). A pneumatically actuated quadrupedal walking robot. IEEE/ASME Transactions on Mechatronics, 19(1), 339–347.

    Article  Google Scholar 

  12. Lee, Y. H., Lee, Y. H., Lee, H., Kang, H., Lee, J. H., Phan, L. T., Jin, S., Kim, Y. B., Seok, D. Y., Lee, S. Y., Moon, H., Koo, J. C., & Choi, H. R. (2020). Development of a quadruped robot system with torque-controllable modular actuator unit. IEEE Transactions on Industrial Electronics, 68(8), 7263–7273.

    Article  Google Scholar 

  13. Boaventura, T., Medrano-Cerda, G. A., Semini, C., Buchli, J., & Caldwell, D. G. (2013). Stability and performance of the compliance controller of the quadruped robot HyQ. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, pp. 1458–1464

  14. Semini, C., Barasuol, V., Boaventura, T., Frigerio, M., Focchi, M., Caldwell, D. G., & Buchli, J. (2015). Towards versatile legged robots through active impedance control. The International Journal of Robotics Research, 34(7), 1003–1020.

    Article  Google Scholar 

  15. Gu, S., Meng, F., Liu, B., Gao, J., & Huang, Q. (2023). High dynamic bounding and jumping motion of quadruped robot based on stable optimization control. Journal of Bionic Engineering, 21(1), 101–111.

    Article  Google Scholar 

  16. Spröwitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., & Ijspeert, A. J. (2013). Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. The International Journal of Robotics Research, 32(8), 932–950.

    Article  Google Scholar 

  17. Gehring, C., Coros, S., Hutter, M., Bellicoso, C. D., Heijnen, H., Diethelm, R., Bloech, M., Rankhauser, T., Hwangbo, J., Hoepflinger, M., & Siegwart, R. (2016). Practice makes perfect: An optimization-based approach to controlling agile motions for a quadruped robot. IEEE Robotics & Automation Magazine, 23(1), 34–43.

    Article  Google Scholar 

  18. Chen, T., Rong, X., Li, Y., Ding, C., Chai, H., & Zhou, L. (2018). A compliant control method for robust trot motion of hydraulic actuated quadruped robot. International Journal of Advanced Robotic Systems, 15(6), 1729881418813235.

    Article  Google Scholar 

  19. Boaventura, T., Buchli, J., Semini, C., & Caldwell, D. G. (2015). Model-based hydraulic impedance control for dynamic robots. IEEE Transactions on Robotics, 31(6), 1324–1336.

    Article  Google Scholar 

  20. Zhu, R., Yang, Q., Song, J., Yang, S., Liu, Y., & Mao, Q. (2021). Research and improvement on active compliance control of hydraulic quadruped robot. International Journal of Control, Automation and Systems, 19(5), 1931–1943.

    Article  Google Scholar 

  21. Shi, Y., Wang, P., Wang, X., Zha, F., Jiang, Z., Guo, W., & Li, M. (2018). Bio-inspired equilibrium point control scheme for quadrupedal locomotion. IEEE Transactions on Cognitive and Developmental Systems, 11(2), 200–209.

    Google Scholar 

  22. Hua, Z., Rong, X., Li, Y., Chai, H., & Zhang, S. (2019). Active compliance control on the hydraulic quadruped robot with passive compliant servo actuator. IEEE Access, 7, 163449–163460.

    Article  Google Scholar 

  23. Zhu, R., Yang, Q., Liu, Y., Dong, R., Jiang, C., & Song, J. (2022). Sliding mode robust control of hydraulic drive unit of hydraulic quadruped robot. International Journal of Control, Automation and Systems, 20(4), 1336–1350.

    Article  Google Scholar 

  24. Nanua, P., & Waldron, K. J. (1995). Energy comparison between trot, bound, and gallop using a simple model. Journal of Biomechanical Engineering, 117(4), 466–473.

    Article  Google Scholar 

  25. Bhounsule, P. A., Cortell, J., & Ruina, A. (2012). Design and control of Ranger: an energy-efficient, dynamic walking robot. Adaptive Mobile Robotics (pp. 441–448).

  26. Yang, K., Zhou, L., Rong, X., & Li, Y. (2018). Onboard hydraulic system controller design for quadruped robot driven by gasoline engine. Mechatronics, 52, 36–48.

    Article  Google Scholar 

  27. Yang, K., Zhou, L., Rong, X., & Li, Y. (2018). An energy optimal foot trajectory for the hydraulic actuated quadruped robot. In 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Tianjin, China, 2018, 329–333.

  28. Yang, K., Li, Y., Zhou, L., & Rong, X. (2019). Energy efficient foot trajectory of trot motion for hydraulic quadruped robot. Energies, 12(13), 2514.

    Article  Google Scholar 

  29. Bellicoso, C. D., Jenelten, F., Gehring, C., & Hutter, M. (2018). Dynamic locomotion through online nonlinear motion optimization for quadrupedal robots. IEEE Robotics and Automation Letters, 3(3), 2261–2268.

    Article  Google Scholar 

  30. Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V., & Hutter, M. (2019). Learning agile and dynamic motor skills for legged robots. Science Robotics, 4(26), eaau5872.

    Article  Google Scholar 

  31. Chen, T., Sun, X., Xu, Z., Li, Y., Rong, X., & Zhou, L. (2019). A trot and flying trot control method for quadruped robot based on optimal foot force distribution. Journal of Bionic Engineering, 16(4), 621–632.

    Article  Google Scholar 

  32. Shi, Y., Li, M., Zha, F., Sun, L., Guo, W., Ma, C., & Li, Z. (2020). Force-controlled compensation scheme for PQ valve-controlled asymmetric cylinder used on hydraulic quadruped robots. Journal of Bionic Engineering, 17(6), 1139–1151.

    Article  Google Scholar 

  33. Neunert, M., Farshidian, F., Winkler, A. W., & Buchli, J. (2017). Trajectory optimization through contacts and automatic gait discovery for quadrupeds. IEEE Robotics and Automation Letters, 2(3), 1502–1509.

    Article  Google Scholar 

  34. Mistry, M., Buchli, J., & Schaal, S. (2010). Inverse dynamics control of floating base systems using orthogonal decomposition. In 2010 IEEE International Conference on Robotics and Automation, Taipei, China, pp. 3406–3412.

  35. Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., & Schaal, S. (2009). Compliant quadruped locomotion over rough terrain. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, Munich, Germany, pp. 814–820.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyang Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Zhang, Z., Zhu, R. et al. Optimal Energy Efficiency Based High-speed Flying Control Method for Hydraulic Quadruped Robot. J Bionic Eng (2024). https://doi.org/10.1007/s42235-024-00509-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42235-024-00509-3

Keywords

Navigation