Skip to main content
Log in

Bioinspired Closed-loop CPG-based Control of a Robotic Manta for Autonomous Swimming

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Fish in nature exhibit a variety of swimming modes such as forward swimming, backward swimming, turning, pitching, etc., enabling them to swim in complex scenes such as coral reefs. It is still difficult for a robotic fish to swim autonomously in a confined area as a real fish. Here, we develop an untethered robotic manta as an experimental platform, which consists of two flexible pectoral fins and a tail fin, with three infrared sensors installed on the front, left, and right sides of the head to sense the surrounding obstacles. To generate multiple swimming modes of the robotic manta and online switching of different modes, we design a closed-loop Central Pattern Generator (CPG) controller based on distance information and use a combination of phase difference and amplitude of the CPG model to achieve stable and rapid adjustment of yaw angle. To verify the autonomous swimming ability of the robotic manta in complex scenes, we design an experimental scenario with a concave obstacle. The experimental results show that the robotic manta can achieve forward swimming, backward swimming, in situ turning within the concave obstacle, and finally exit from the area safely while relying on the perception of external obstacles, which can provide insight into the autonomous exploration of complex scenes by the biomimetic robotic fish. Finally, the swimming ability of the robotic manta is verified by field tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–240. https://doi.org/10.1126/science.281.5374.237

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., & Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752. https://doi.org/10.1126/science.1246752

    Article  CAS  PubMed  Google Scholar 

  3. Sahoo, A., Dwivedy, S. K., & Robi, P. S. (2019). Advancements in the field of autonomous underwater vehicle. Ocean Engineering, 181, 145–160. https://doi.org/10.1016/j.oceaneng.2019.04.011

    Article  Google Scholar 

  4. Yu, J., Wang, M., Dong, H., Zhang, Y., & Wu, Z. (2018). Motion control and motion coordination of bionic robotic fish: A review. Journal of Bionic Engineering, 15, 579–598. https://doi.org/10.1007/s42235-018-0048-2

    Article  ADS  Google Scholar 

  5. Scaradozzi, D., Palmieri, G., Costa, D., & Pinelli, A. (2017). BCF swimming locomotion for autonomous underwater robots: A review and a novel solution to improve control and efficiency. Ocean Engineering, 130, 437–453. https://doi.org/10.1016/j.oceaneng.2016.11.055

    Article  Google Scholar 

  6. Fish, F. E. (2013). Advantages of natural propulsive systems. Marine Technology Society Journal, 47, 37–44. https://doi.org/10.4031/MTSJ.47.5.2

    Article  Google Scholar 

  7. Fish, F. E. (2020). Advantages of aquatic animals as models for bio-inspired drones over present AUV technology. Bioinspiration & Biomimetics, 15, 025001. https://doi.org/10.1088/1748-3190/ab5a34

    Article  ADS  Google Scholar 

  8. Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 24, 237–252. https://doi.org/10.1109/48.757275

    Article  ADS  Google Scholar 

  9. Blake, R. W. (2004). Fish functional design and swimming performance. Journal of Fish Biology, 65, 1193–1222. https://doi.org/10.1111/j.0022-1112.2004.00568.x

    Article  Google Scholar 

  10. Colgate, J. E., & Lynch, K. M. (2004). Mechanics and control of swimming: A review. IEEE Journal of Oceanic Engineering, 29, 660–673. https://doi.org/10.1109/JOE.2004.833208

    Article  ADS  Google Scholar 

  11. Rosenberger, L. J. (2001). Pectoral fin locomotion in batoid fishes: Undulation versus oscillation. Journal of Experimental Biology, 204, 379–394. https://doi.org/10.1242/jeb.204.2.379

    Article  CAS  PubMed  Google Scholar 

  12. Heine, C. (1992). Mechanics of flapping fin locomotion in the cownose ray, Rhinoptera bonasus (Elasmobranchii: Myliobatidae) [PhD Dissertation, Duke University]. ProQuest & Theses Global. https://www.proquest.com/dissertations-theses/mechanics-flapping-fin-locomotion-cownose-ray/docview/303975284/se-2

  13. Moored, K. W., Dewey, P. A., Leftwich, M. C., Bart-Smith, H., & Smits, A. J. (2011). Bioinspired propulsion mechanisms based on manta ray locomotion. Marine Technology Society Journal, 45, 110–118. https://doi.org/10.4031/MTSJ.45.4.3

    Article  Google Scholar 

  14. Fish, F. E., Schreiber, C. M., Moored, K. W., Liu, G., Dong, H., & Bart-Smith, H. (2016). Hydrodynamic performance of aquatic flapping: Efficiency of underwater flight in the manta. Aerospace, 3, 20. https://doi.org/10.3390/aerospace3030020

    Article  Google Scholar 

  15. Parson, J. M., Fish, F. E., & Nicastro, A. J. (2011). Turning performance of batoids: Limitations of a rigid body. Journal of Experimental Marine Biology and Ecology, 402, 12–18. https://doi.org/10.1016/j.jembe.2011.03.010

    Article  Google Scholar 

  16. Fish, F. E., Kolpas, A., Crossett, A., Dudas, M. A., Moored, K. W., & Bart-Smith, H. (2018). Kinematics of swimming of the manta ray: Three-dimensional analysis of open-water maneuverability. Journal of Experimental Biology, 221, jeb166041. https://doi.org/10.1242/jeb.166041

    Article  PubMed  Google Scholar 

  17. Li, T., Li, G., Liang, Y., Cheng, T., Dai, J., Yang, X., Liu, B., Zeng, Z., Huang, Z., Luo, Y., Xie, T., & Yang, W. (2017). Fast-moving soft electronic fish. Science Advances, 3, e1602045. https://doi.org/10.1126/sciadv.1602045

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao, Y., Ma, S., Cao, Y., Pan, G., Huang, Q., & Cao, Y. (2022). Similarity evaluation rule and motion posture optimization for a manta ray robot. Journal of Marine Science and Engineering, 10, 908. https://doi.org/10.3390/jmse10070908

    Article  Google Scholar 

  19. Hao, Y., Cao, Y., Cao, Y., Huang, Q., & Pan, G. (2022). Course control of a manta robot based on amplitude and phase differences. Journal of Marine Science and Engineering, 10, 285. https://doi.org/10.3390/jmse10020285

    Article  Google Scholar 

  20. Cao, Y., Xie, Y., He, Y., Pan, G., Huang, Q., & Cao, Y. (2022). Bioinspired Central Pattern Generator and TS Fuzzy Neural Network-based control of a robotic manta for depth and heading tracking. Journal of Marine Science and Engineering, 10, 758. https://doi.org/10.3390/jmse10060758

    Article  Google Scholar 

  21. Menzer, A., Gong, Y., Fish, F. E., & Dong, H. (2022). Bio-inspired propulsion: Towards understanding the role of pectoral fin kinematics in manta-like swimming. Biomimetics, 7, 45. https://doi.org/10.3390/biomimetics7020045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, Y., Liu, Y., Zhang, L., Wang, Y., Niu, W., & Huang, C. (2022). Dynamic model and motion characteristics of an underwater glider with manta-inspired wings. Journal of Bionic Engineering, 19, 1–15. https://doi.org/10.1007/s42235-021-00130-8

    Article  Google Scholar 

  23. Gillis, G. B. (1996). Undulatory locomotion in elongate aquatic vertebrates: Anguilliform swimming since Sir James Gray. American Zoologist, 36, 656–665. https://doi.org/10.1093/icb/36.6.656

    Article  Google Scholar 

  24. Webb, P. W., & Fairchild, A. G. (2001). Performance and maneuverability of three species of teleostean fishes. Canadian Journal of Zoology, 79, 1866–1877. https://doi.org/10.1139/z01-146

    Article  Google Scholar 

  25. Herrel, A., Choi, H. F., De Schepper, N., Aerts, P., & Adriaens, D. (2011). Kinematics of swimming in two burrowing anguilliform fishes. Zoology, 114, 78–84. https://doi.org/10.1016/j.zool.2010.10.004

    Article  PubMed  Google Scholar 

  26. Niu, X., Xu, J., Ren, Q., & Wang, Q. (2013). Locomotion generation and motion library design for an anguilliform robotic fish. Journal of Bionic Engineering, 10, 251–264. https://doi.org/10.1016/S1672-6529(13)60221-8

    Article  Google Scholar 

  27. Wu, Z., Yu, J., Tan, M., & Zhang, J. (2014). Kinematic comparison of forward and backward swimming and maneuvering in a self-propelled sub-carangiform robotic fish. Journal of Bionic Engineering, 11, 199–212. https://doi.org/10.1016/S1672-6529(14)60037-8

    Article  Google Scholar 

  28. D’aout, K., & Aerts, P. (1999). A kinematic comparison of forward and backward swimming in the eel Anguilla anguilla. Journal of Experimental Biology, 202, 1511–1521. https://doi.org/10.1242/jeb.202.11.1511

    Article  Google Scholar 

  29. Zhou, C., & Low, K. H. (2011). Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Transactions on Mechatronics, 17, 25–35. https://doi.org/10.1109/TMECH.2011.2175004

    Article  Google Scholar 

  30. Islam, S. S., Zelenin, P. V., Orlovsky, G. N., Grillner, S., & Deliagina, T. G. (2006). Pattern of motor coordination underlying backward swimming in the lamprey. Journal of Neurophysiology, 96, 451–460. https://doi.org/10.1152/jn.01277.2005

    Article  PubMed  Google Scholar 

  31. Zelenin, P. V. (2011). Reticulospinal neurons controlling forward and backward swimming in the lamprey. Journal of Neurophysiology, 105, 1361–1371. https://doi.org/10.1152/jn.00887.2010

    Article  CAS  PubMed  Google Scholar 

  32. Islam, S. S., & Zelenin, P. V. (2008). Modifications of locomotor pattern underlying escape behavior in the lamprey. Journal of Neurophysiology, 99, 297–307. https://doi.org/10.1152/jn.00903.2007

    Article  PubMed  Google Scholar 

  33. Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural networks, 21, 642–653. https://doi.org/10.1016/j.neunet.2008.03.014

    Article  PubMed  Google Scholar 

  34. Liu, C., Wang, D., Goodman, E. D., & Chen, Q. (2016). Adaptive walking control of biped robots using online trajectory generation method based on neural oscillators. Journal of Bionic Engineering, 13, 572–584. https://doi.org/10.1016/S1672-6529(16)60329-3

    Article  Google Scholar 

  35. Xie, F., Zhong, Y., Du, R., & Li, Z. (2019). Central Pattern Generator (CPG) control of a biomimetic robot fish for multimodal swimming. Journal of Bionic Engineering, 16, 222–234. https://doi.org/10.1007/s42235-019-0019-2

    Article  Google Scholar 

  36. Cao, Y., Lu, Y., Cai, Y., Bi, S., & Pan, G. (2019). CPG-fuzzy-based control of a cownose-ray-like fish robot. Industrial Robot: The International Journal of Robotics Research and Application, 46, 779–791. https://doi.org/10.1108/IR-02-2019-0029

    Article  Google Scholar 

  37. Ding, J., Zheng, C., Song, C., Zuo, Q., Xu, Y., Dong, B., Cui, J., He, K., & Xie, F. (2022). Experimental study on the improvement of yaw stability by coordination control between the caudal fin and anal fin. Journal of Bionic Engineering, 19, 1261–1271. https://doi.org/10.1007/s42235-022-00201-4

    Article  Google Scholar 

  38. Thandiackal, R., Melo, K., Paez, L., Herault, J., Kano, T., Akiyama, K., Boyer, F., Ryczko, D., Ishiguro, A., & Ijspeert, A. J. (2021). Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing. Science Robotics, 6, eabf6354. https://doi.org/10.1126/scirobotics.abf6354

    Article  PubMed  Google Scholar 

  39. Chen, J., Yin, B., Wang, C., Xie, F., Du, R., & Zhong, Y. (2021). Bioinspired closed-loop CPG-based control of a robot fish for obstacle avoidance and direction tracking. Journal of Bionic Engineering, 18, 171–183. https://doi.org/10.1007/s42235-021-0008-0

    Article  CAS  Google Scholar 

  40. Zhang, S., Qian, Y., Liao, P., Qin, F., & Yang, J. (2016). Design and control of an agile robotic fish with integrative biomimetic mechanisms. IEEE/ASME Transactions on Mechatronics, 21, 1846–1857. https://doi.org/10.1109/TMECH.2016.2555703

    Article  Google Scholar 

  41. Yan, S., Wu, Z., Wang, J., Huang, Y., Tan, M., & Yu, J. (2022). Real-world learning control for autonomous exploration of a biomimetic robotic shark. IEEE Transactions on Industrial Electronics, 70, 3966–3974. https://doi.org/10.1109/TIE.2022.3174306

    Article  Google Scholar 

  42. Schaefer, J. T., & Summers, A. P. (2005). Batoid wing skeletal structure: Novel morphologies, mechanical implications, and phylogenetic patterns. Journal of Morphology, 264, 298–313. https://doi.org/10.1002/jmor.10331

    Article  PubMed  Google Scholar 

  43. Russo, R. S., Blemker, S. S., Fish, F. E., & Bart-Smith, H. (2015). Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: Implications for bio-inspired design. Bioinspiration & Biomimetics, 10, 046002. https://doi.org/10.1088/1748-3190/10/4/046002

    Article  ADS  CAS  Google Scholar 

  44. Ijspeert, A. J., Crespi, A., Ryczko, D., & Cabelguen, J. M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315, 1416–1420. https://doi.org/10.1126/science.1138353

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Haoke Zhu for his help in building the robotic manta, and thank Bo Li for his help in conducting experiments. This work was supported by the National Key Research and Development Program (Grant No. 2020YFB1313200, 2022YFC2805200); the National Natural Science Foundation of China (Grant No. 52001260, 52201381); Ningbo Natural Science Foundation (Grant No. 2022J062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Cao.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Cao, Y., Cao, Y. et al. Bioinspired Closed-loop CPG-based Control of a Robotic Manta for Autonomous Swimming. J Bionic Eng 21, 177–191 (2024). https://doi.org/10.1007/s42235-023-00424-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00424-z

Keywords

Navigation