Skip to main content
Log in

Discrete Improved Grey Wolf Optimizer for Community Detection

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Detecting communities in real and complex networks is a highly contested topic in network analysis. Although many metaheuristic-based algorithms for community detection have been proposed, they still cannot effectively fulfill large-scale and real-world networks. Thus, this paper presents a new discrete version of the Improved Grey Wolf Optimizer (I-GWO) algorithm named DI-GWOCD for effectively detecting communities of different networks. In the proposed DI-GWOCD algorithm, I-GWO is first armed using a local search strategy to discover and improve nodes placed in improper communities and increase its ability to search for a better solution. Then a novel Binary Distance Vector (BDV) is introduced to calculate the wolves’ distances and adapt I-GWO for solving the discrete community detection problem. The performance of the proposed DI-GWOCD was evaluated in terms of modularity, NMI, and the number of detected communities conducted by some well-known real-world network datasets. The experimental results were compared with the state-of-the-art algorithms and statistically analyzed using the Friedman and Wilcoxon tests. The comparison and the statistical analysis show that the proposed DI-GWOCD can detect the communities with higher quality than other comparative algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Singh, A., Sharma, S., & Singh, J. (2021). Nature-inspired algorithms for wireless sensor networks: A comprehensive survey. Computer Science Review, 39, 100342.

    MathSciNet  MATH  Google Scholar 

  2. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99(12), 7821–7826. https://doi.org/10.1073/pnas.122653799

    Article  MathSciNet  MATH  Google Scholar 

  3. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174.

    MathSciNet  Google Scholar 

  4. Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593–1608. https://doi.org/10.1093/jxb/err460

    Article  Google Scholar 

  5. Bouguessa, M., & Nouri, K. (2020). BiNeTClus: bipartite network community detection based on transactional clustering. ACM Transactions on Intelligent Systems and Technology (TIST), 12(1), 1–26.

    Google Scholar 

  6. Ramirez-Orta, J., & Milios, E. (2021). Unsupervised document summarization using pre-trained sentence embeddings and graph centrality. In Proceedings of the Second Workshop on Scholarly Document Processing.

  7. Al-Andoli, M. N., Tan, S. C., Cheah, W. P., & Tan, S. Y. (2021). A review on community detection in large complex networks from conventional to deep learning methods: A call for the use of parallel meta-heuristic algorithms. IEEE Access, 9, 96501–96527.

    Google Scholar 

  8. Li, X., Wu, X., Xu, S., Qing, S., & Chang, P.-C. (2019). A novel complex network community detection approach using discrete particle swarm optimization with particle diversity and mutation. Applied Soft Computing, 81, 105476. https://doi.org/10.1016/j.asoc.2019.05.003

    Article  Google Scholar 

  9. Huang, S., Wu, Y., & Gao, S. (2021). Data-driven clustering in ad-hoc networks based on community detection. In Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers.

  10. Mikhina, E. K., & Trifalenkov, V. I. (2018). Text clustering as graph community detection. Procedia Computer Science, 123, 271–277. https://doi.org/10.1016/j.procs.2018.01.042

    Article  Google Scholar 

  11. Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Publication of the Mathematical Institute of the Hungarian Academy of Sciences, 5(1), 17–60.

    MathSciNet  MATH  Google Scholar 

  12. Kloster, K., & Gleich, D. F. (2014). Heat kernel based community detection. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

  13. Klymko, C., Gleich, D., & Kolda, T. G. (2014). Using triangles to improve community detection in directed networks. arXiv preprint arXiv:1404.5874.

  14. Shi, C., Yan, Z., Cai, Y., & Wu, B. (2012). Multi-objective community detection in complex networks. Applied Soft Computing, 12(2), 850–859. https://doi.org/10.1016/j.asoc.2011.10.005

    Article  Google Scholar 

  15. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2658–2663. https://doi.org/10.1073/pnas.0400054101

    Article  Google Scholar 

  16. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113. https://doi.org/10.1103/PhysRevE.69.026113

    Article  Google Scholar 

  17. Raghavan, U. N., Albert, R., & Kumara, S. (2007). Near linear time algorithm to detect community structures in large-scale networks. Physical Review E, 76(3), 036106. https://doi.org/10.1103/PhysRevE.76.036106

    Article  Google Scholar 

  18. Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 066133. https://doi.org/10.1103/PhysRevE.69.066133

    Article  Google Scholar 

  19. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

    MATH  Google Scholar 

  20. Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582. https://doi.org/10.1073/pnas.0601602103

    Article  Google Scholar 

  21. Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3), 036104. https://doi.org/10.1103/PhysRevE.74.036104

    Article  MathSciNet  Google Scholar 

  22. Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 066111. https://doi.org/10.1103/PhysRevE.70.066111

    Article  Google Scholar 

  23. Talbi, E. G. (2009). Metaheuristics: From design to implementation (Vol. 74). Wiley.

    MATH  Google Scholar 

  24. Greco, S., Pavone, M. F., Talbi, E.-G., & Vigo, D. (2021). Metaheuristics for combinatorial optimization. Springer.

    MATH  Google Scholar 

  25. Li, J.-Q., Du, Y., Gao, K.-Z., Duan, P.-Y., Gong, D.-W., Pan, Q.-K., & Suganthan, P. (2021). A hybrid iterated greedy algorithm for a crane transportation flexible job shop problem. IEEE Transactions on Automation Science and Engineering, 19(3), 2153–2170.

  26. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., Zamani, H., & Bahreininejad, A. (2022). GGWO: Gaze cues learning-based grey wolf optimizer and its applications for solving engineering problems. Journal of Computational Science, 61, 101636.

  27. Sharma, L. D., Bohat, V. K., Habib, M., Ala’M, A.-Z., Faris, H., & Aljarah, I. (2022). Evolutionary inspired approach for mental stress detection using EEG signal. Expert Systems with Applications, 197, 116634.

    Google Scholar 

  28. Hou, Y., Gao, H., Wang, Z., & Du, C. (2022). Improved Grey Wolf Optimization algorithm and application. Sensors, 22(10), 3810.

    Google Scholar 

  29. Yuan, Y., Mu, X., Shao, X., Ren, J., Zhao, Y., & Wang, Z. (2022). Optimization of an auto drum fashioned brake using the elite opposition-based learning and chaotic k-best gravitational search strategy based Grey Wolf Optimizer algorithm. Applied Soft Computing, 123, 108947.

    Google Scholar 

  30. Zareie, A., Sheikhahmadi, A., & Jalili, M. (2020). Identification of influential users in social network using Gray Wolf Optimization algorithm. Expert Systems with Applications, 142, 112971.

    Google Scholar 

  31. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., & Faris, H. (2020). MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems. Applied Soft Computing, 97, 106761.

    Google Scholar 

  32. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  33. Talbi, E. G. (2009). Metaheuristics: From design to implementation. Wiley. https://books.google.com/books?id=SIsa6zi5XV8C

  34. Cuevas, E., Cienfuegos, M., Zaldívar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Systems with Applications, 40(16), 6374–6384.

    Google Scholar 

  35. Žalik, K. R., & Žalik, B. (2018). Memetic algorithm using node entropy and partition entropy for community detection in networks. Information Sciences, 445–446, 38–49. https://doi.org/10.1016/j.ins.2018.02.063

    Article  MathSciNet  Google Scholar 

  36. Fozuni Shirjini, M., Farzi, S., & Nikanjam, A. (2020). MDPCluster: A swarm-based community detection algorithm in large-scale graphs. Computing, 102(4), 893–922. https://doi.org/10.1007/s00607-019-00787-4

    Article  MathSciNet  MATH  Google Scholar 

  37. Shi, C., Yan, Z., Wang, Y., Cai, Y., & Wu, B. (2010). A genetic algorithm for detecting communities in large-scale complex networks. Advances in Complex Systems, 13(01), 3–17. https://doi.org/10.1142/S0219525910002463

    Article  MathSciNet  MATH  Google Scholar 

  38. Tasgin, M., Herdagdelen, A., & Bingol, H. (2007). Community detection in complex networks using genetic algorithms. http://arxiv.org/abs/0711.0491 [physics].

  39. Li, Z., Zhang, S., Wang, R.-S., Zhang, X.-S., & Chen, L. (2008). Quantitative function for community detection. Physical Review E, 77(3), 036109. https://doi.org/10.1103/PhysRevE.77.036109

    Article  Google Scholar 

  40. Pizzuti, C. (2008). GA-Net: A genetic algorithm for community detection in social networks. In G. Rudolph, T. Jansen, N. Beume, S. Lucas, & C. Poloni (Eds.), Parallel problem solving from nature—PPSN X (vol. 5199, pp. 1081–1090). Springer. https://doi.org/10.1007/978-3-540-87700-4_107

  41. Schaub, M. T., Delvenne, J.-C., Rosvall, M., & Lambiotte, R. (2017). The many facets of community detection in complex networks. Applied Network Science, 2(1), 4. https://doi.org/10.1007/s41109-017-0023-6

    Article  Google Scholar 

  42. Prat-Pérez, A., Dominguez-Sal, D., & Larriba-Pey, J.-L. (2014). High quality, scalable and parallel community detection for large real graphs. In Proceedings of the 23rd International Conference on World Wide Web.

  43. Nadimi-Shahraki, M. H., Taghian, S., & Mirjalili, S. (2021). An improved Grey Wolf Optimizer for solving engineering problems. Expert Systems with Applications, 166, 113917. https://doi.org/10.1016/j.eswa.2020.113917

    Article  Google Scholar 

  44. Tu, Q., Chen, X., & Liu, X. (2019). Hierarchy strengthened Grey Wolf Optimizer for numerical optimization and feature selection. IEEE Access, 7, 78012–78028.

    Google Scholar 

  45. Heidari, A. A., & Pahlavani, P. (2017). An efficient modified Grey Wolf Optimizer with Lévy flight for optimization tasks. Applied Soft Computing, 60, 115–134.

    Google Scholar 

  46. Moradi, M., & Parsa, S. (2019). An evolutionary method for community detection using a novel local search strategy. Physica A: Statistical Mechanics and its Applications, 523, 457–475. https://doi.org/10.1016/j.physa.2019.01.133

    Article  Google Scholar 

  47. Zhang, Y., Liu, Y., Li, J., Zhu, J., Yang, C., Yang, W., & Wen, C. (2020). WOCDA: A whale optimization based community detection algorithm. Physica A: Statistical Mechanics and its Applications, 539, 122937. https://doi.org/10.1016/j.physa.2019.122937

    Article  Google Scholar 

  48. Nadimi-Shahraki, M. H., Moeini, E., Taghian, S., & Mirjalili, S. (2021). DMFO-CD: A Discrete Moth-Flame Optimization algorithm for community detection. Algorithms, 14(11), 314.

    Google Scholar 

  49. Javed, M. A., Younis, M. S., Latif, S., Qadir, J., & Baig, A. (2018). Community detection in networks: A multidisciplinary review. Journal of Network and Computer Applications, 108, 87–111.

    Google Scholar 

  50. Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3–18.

    Google Scholar 

  51. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  52. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., & Abualigah, L. (2022). Binary aquila optimizer for selecting effective features from medical data: A COVID-19 case study. Mathematics, 10(11), 1929.

    Google Scholar 

  53. Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. (3), 95–99.

  54. Koza, J. R. (1997). Genetic programming. Search methodologies. Springer.

    Google Scholar 

  55. Storn, R., & Price, K. (1997). Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  56. Yao, X., Liu, Y., & Lin, G. (1999). Evolutionary programming made faster. IEEE Transactions on Evolutionary Computation, 3(2), 82–102. https://doi.org/10.1109/4235.771163

    Article  Google Scholar 

  57. Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 12(6), 702–713.

    Google Scholar 

  58. Rechenberg, I. (1973). Evolution strategy: Optimization of technical systems by means of biological evolution. Fromman-Holzboog, Stuttgart, 104, 15–16.

    Google Scholar 

  59. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks.

  60. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm. http://arxiv.org/abs/1004.4170 [physics]

  61. Mirjalili, S. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems, 89, 228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  62. Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.

    MathSciNet  MATH  Google Scholar 

  63. Erol, O. K., & Eksin, I. (2006). A new optimization method: Big bang–big crunch. Advances in Engineering Software, 37(2), 106–111.

    Google Scholar 

  64. Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowledge-Based Systems, 163, 283–304.

    Google Scholar 

  65. Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.

    MATH  Google Scholar 

  66. Hatamlou, A. (2013). Black hole: A new heuristic optimization approach for data clustering. Information Sciences, 222, 175–184.

    MathSciNet  Google Scholar 

  67. Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019). Henry gas solubility optimization: A novel physics-based algorithm. Future Generation Computer Systems, 101, 646–667.

    Google Scholar 

  68. Su, H., Zhao, D., Heidari, A. A., Liu, L., Zhang, X., Mafarja, M., & Chen, H. (2023). RIME: A physics-based optimization. Neurocomputing, 532, 183–214.

  69. Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver Press.

    Google Scholar 

  70. Memmah, M.-M., Lescourret, F., Yao, X., & Lavigne, C. (2015). Metaheuristics for agricultural land use optimization. A review. Agronomy for Sustainable Development, 35(3), 975–998.

    Google Scholar 

  71. Yu, H., Liu, J., Chen, C., Heidari, A. A., Zhang, Q., & Chen, H. (2022). Optimized deep residual network system for diagnosing tomato pests. Computers and Electronics in Agriculture, 195, 106805.

    Google Scholar 

  72. Fard, E. S., Monfaredi, K., & Nadimi-Shahraki, M. H. (2014). An area-optimized chip of ant colony algorithm design in hardware platform using the address-based method. International Journal of Electrical and Computer Engineering, 4(6), 989–998.

    Google Scholar 

  73. Zahrani, H. K., Nadimi-Shahraki, M. H., & Sayarshad, H. R. (2021). An intelligent social-based method for rail-car fleet sizing problem. Journal of Rail Transport Planning & Management, 17, 100231.

    Google Scholar 

  74. Houssein, E. H., Saad, M. R., Hussain, K., Shaban, H., & Hassaballah, M. (2021). A review of metaheuristic optimization algorithms in wireless sensor networks. Metaheuristics in Machine Learning: Theory and Applications, 193–217.

  75. Can, U., & Alatas, B. (2021). A novel approach for efficient stance detection in online social networks with metaheuristic optimization. Technology in Society, 64, 101501.

    Google Scholar 

  76. Masdari, M., & Barshandeh, S. (2020). Discrete teaching–learning-based optimization algorithm for clustering in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(11), 5459–5476.

    Google Scholar 

  77. Oliva, D., Hinojosa, S., Cuevas, E., Pajares, G., Avalos, O., & Gálvez, J. (2017). Cross entropy based thresholding for magnetic resonance brain images using Crow Search algorithm. Expert Systems with Applications, 79, 164–180.

    Google Scholar 

  78. Mohakud, R., & Dash, R. (2022). Skin cancer image segmentation utilizing a novel EN-GWO based hyper-parameter optimized FCEDN. Journal of King Saud University-Computer and Information Sciences, 34(10), 9889–9904.

  79. Abualigah, L., Habash, M., Hanandeh, E. S., Hussein, A. M., Shinwan, M. A., Zitar, R. A., & Jia, H. (2023). Improved Reptile Search algorithm by Salp Swarm algorithm for medical image segmentation. Journal of Bionic Engineering, 1–25.

  80. Taghian, S., Nadimi-Shahraki, M. H., & Zamani, H. (2018). Comparative analysis of transfer function-based binary metaheuristic algorithms for feature selection. In 2018 International Conference on Artificial Intelligence and Data Processing (IDAP).

  81. Shaddeli, A., Gharehchopogh, F. S., Masdari, M., & Solouk, V. (2023). BFRA: A New Binary Hyper-Heuristics Feature Ranks Algorithm for Feature Selection in High-Dimensional Classification Data. International Journal of Information Technology & Decision Making (IJITDM), 22(01), 471–536.

  82. Taghian, S., & Nadimi-Shahraki, M. H. (2019). A binary metaheuristic algorithm for wrapper feature selection. International Journal of Computer Sciences and Engineering. (IJCSE), 8, 168–172.

    Google Scholar 

  83. Hosseinzadeh, M., Masdari, M., Rahmani, A. M., Mohammadi, M., Aldalwie, A. H. M., Majeed, M. K., & Karim, S. H. T. (2021). Improved butterfly optimization algorithm for data placement and scheduling in edge computing environments. Journal of Grid Computing, 19(2), 1–27.

    Google Scholar 

  84. Saad, S., Muhammed, A., Abdullahi, M., Abdullah, A., & Hakim Ayob, F. (2021). An enhanced discrete symbiotic organism search algorithm for optimal task scheduling in the cloud. Algorithms, 14(7), 200.

    Google Scholar 

  85. Shishavan, S. T., & Gharehchopogh, F. S. (2022). An improved cuckoo search optimization algorithm with genetic algorithm for community detection in complex networks. Multimedia Tools and Applications, 81(18), 25205–25231.

  86. Nadimi-Shahraki, M. H., Banaie-Dezfouli, M., Zamani, H., Taghian, S., & Mirjalili, S. (2021). B-MFO: A binary moth-flame optimization for feature selection from medical datasets. Computers, 10(11), 136.

    Google Scholar 

  87. Piri, J., Mohapatra, P., Acharya, B., Gharehchopogh, F. S., Gerogiannis, V. C., Kanavos, A., & Manika, S. (2022). Feature selection using artificial gorilla troop optimization for biomedical data: A case analysis with COVID-19 data. Mathematics, 10(15), 2742.

    Google Scholar 

  88. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., Abualigah, L., Abd Elaziz, M., & Oliva, D. (2021). EWOA-OPF: Effective whale optimization algorithm to solve optimal power flow problem. Electronics, 10(23), 2975.

    Google Scholar 

  89. Attia, A.-F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331–343.

    Google Scholar 

  90. Neshat, M., Alexander, B., & Wagner, M. (2020). A hybrid cooperative co-evolution algorithm framework for optimising power take off and placements of wave energy converters. Information Sciences, 534, 218–244.

    MathSciNet  Google Scholar 

  91. Yang, Q., Hua, L., Gao, X., Xu, D., Lu, Z., Jeon, S.-W., & Zhang, J. (2022). Stochastic cognitive dominance leading particle swarm optimization for multimodal problems. Mathematics, 10(5), 761.

    Google Scholar 

  92. Mergos, P. E., & Yang, X. S. (2023). Flower pollination algorithm with pollinator attraction. Evolutionary Intelligence, 16(3), 873–889.

  93. Gharehchopogh, F. S. (2022). An improved tunicate swarm algorithm with best-random mutation strategy for global optimization problems. Journal of Bionic Engineering, 1–26.

  94. Nadimi-Shahraki, M. H., Taghian, S., Mirjalili, S., Ewees, A. A., Abualigah, L., & Abd Elaziz, M. (2021). MTV-MFO: Multi-trial vector-based moth-flame optimization algorithm. Symmetry, 13(12), 2388.

    Google Scholar 

  95. Tu, J., Chen, H., Wang, M., & Gandomi, A. H. (2021). The colony predation algorithm. Journal of Bionic Engineering, 18, 674–710.

    Google Scholar 

  96. Ahmadianfar, I., Heidari, A. A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079.

    Google Scholar 

  97. Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864.

    Google Scholar 

  98. Wang, G. G., Deb, S., & Cui, Z. (2019). Monarch butterfly optimization. Neural Computing and Applications, 31, 1995–2014.

    Google Scholar 

  99. Wang, G. G. (2018). Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems. Memetic Computing, 10(2), 151–164.

    Google Scholar 

  100. Ahmadianfar, I., Heidari, A. A., Noshadian, S., Chen, H., & Gandomi, A. H. (2022). INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Systems with Applications, 195, 116516.

    Google Scholar 

  101. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849–872.

    Google Scholar 

  102. Gharehchopogh, F. S., Namazi, M., Ebrahimi, L., & Abdollahzadeh, B. (2023). Advances in sparrow search algorithm: A comprehensive survey. Archives of Computational Methods in Engineering, 30(1), 427–455.

    Google Scholar 

  103. Gharehchopogh, F. S. (2022). An improved tunicate swarm algorithm with best-random mutation strategy for global optimization problems. Journal of Bionic Engineering, 19(4), 1177–1202.

    Google Scholar 

  104. Golestan Hashemi, F. S., Razi Ismail, M., Rafii Yusop, M., Golestan Hashemi, M. S., Nadimi Shahraki, M. H., Rastegari, H., . . . Aslani, F. (2018). Intelligent mining of large-scale bio-data: Bioinformatics applications. Biotechnology & Biotechnological Equipment, 32(1), 10–29.

  105. Varaee, H., Shishegaran, A., & Ghasemi, M. R. (2021). The life-cycle cost analysis based on probabilistic optimization using a novel algorithm. Journal of Building Engineering, 43, 103032.

    Google Scholar 

  106. Lin, G. Q., Li, L. L., Tseng, M. L., Liu, H. M., Yuan, D. D., & Tan, R. R. (2020). An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation. Journal of Cleaner Production, 253, 119966. https://doi.org/10.1016/j.jclepro.2020.119966

    Article  Google Scholar 

  107. Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323.

    Google Scholar 

  108. Yuan, Y. L., Shen, Q. L., Wang, S., Ren, J. J., Yang, D. H., Yang, Q. K., Fan, J. K., & Mu, X. K.(2023). Coronavirus mask protection algorithm: A new bio-inspired optimization algorithm and its applications. Journal of Bionic Engineering, 1–19.

  109. Yuan, Y., Ren, J., Wang, S., Wang, Z., Mu, X., & Zhao, W. (2022). Alpine skiing optimization: A new bio-inspired optimization algorithm. Advances in Engineering Software, 170, 103158.

    Google Scholar 

  110. Nadimi-Shahraki, M. H., Taghian, S., Zamani, H., Mirjalili, S., & Elaziz, M. A. (2023). MMKE: Multi-trial vector-based monkey king evolution algorithm and its applications for engineering optimization problems. PLoS ONE, 18(1), e0280006.

    Google Scholar 

  111. Gharehpasha, S., Masdari, M., & Jafarian, A. (2021). Power efficient virtual machine placement in cloud data centers with a discrete and chaotic hybrid optimization algorithm. Cluster Computing, 24(2), 1293–1315.

    Google Scholar 

  112. Rahimi, S., Abdollahpouri, A., & Moradi, P. (2018). A multi-objective particle swarm optimization algorithm for community detection in complex networks. Swarm and Evolutionary Computation, 39, 297–309. https://doi.org/10.1016/j.swevo.2017.10.009

    Article  Google Scholar 

  113. Ahmed, K., Hafez, A. I., & Hassanien, A. E. (2015). A discrete krill herd optimization algorithm for community detection. In 2015 11th International Computer Engineering Conference (ICENCO).

  114. Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-inspired optimization algorithm. Communications in Nonlinear Science and Numerical Simulation, 17(12), 4831–4845.

    MathSciNet  MATH  Google Scholar 

  115. Wang, G.-G., Guo, L., Gandomi, A. H., Hao, G.-S., & Wang, H. (2014). Chaotic krill herd algorithm. Information Sciences, 274, 17–34.

    MathSciNet  Google Scholar 

  116. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67.

    Google Scholar 

  117. Aung, T. T., & Nyunt, T. T. S. (2018). Community detection in social network using artificial bee colony with genetic operator. MERAL Portal.

  118. Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Journal of Global Optimization, 39(3), 459–471.

    MathSciNet  MATH  Google Scholar 

  119. Dorigo, M., & Caro, G. D. (1999). Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406),

  120. Ji, P., Zhang, S., & Zhou, Z. (2020). A decomposition-based ant colony optimization algorithm for the multi-objective community detection. Journal of Ambient Intelligence and Humanized Computing, 11(1), 173–188.

    Google Scholar 

  121. Jokar, E., Mosleh, M., & Kheyrandish, M. (2022). GWBM: an algorithm based on grey wolf optimization and balanced modularity for community discovery in social networks. The Journal of Supercomputing, 78(5), 7354–7377.

  122. Kang, Y., Huang, X., Xu, Z., Yang, X., & Li, X. (2021). A Grey Wolf Optimization algorithm with triangular community and crossover operator for community discovery. In 2021 7th International Conference on Systems and Informatics (ICSAI).,

  123. Besharatnia, F., Talebpour, A., & Aliakbary, S. (2022). An improved grey wolves optimization algorithm for dynamic community detection and data clustering. Applied Artificial Intelligence, 36(1), 2012000.

  124. Rani, S., & Mehrotra, M. (2018). A hybrid bat algorithm for community detection in social networks. In International Conference on Intelligent Systems Design and Applications.

  125. Song, A., Li, M., Ding, X., Cao, W., & Pu, K. (2016). Community detection using Discrete Bat algorithm. IAENG International Journal of Computer Science, 43(1), 37–43.

    Google Scholar 

  126. Pizzuti, C. GA-NET: A genetic algorithm for community detection in social networks. Retrieved 20 September 2021 from http://staff.icar.cnr.it/pizzuti/codes.html

  127. Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4), 452–473. http://www.jstor.org/stable/3629752

  128. Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E., & Dawson, S. M. (2003). The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology, 54(4), 396–405. https://doi.org/10.1007/s00265-003-0651-y

    Article  Google Scholar 

  129. Yin, H., Benson, A. R., Leskovec, J., & Gleich, D. F. (2017). Local higher-order graph clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

  130. Adamic, L. A., & Glance, N. (2005). The political blogosphere and the 2004 US election: Divided they blog. In Proceedings of the 3rd International Workshop on Link Discovery.

  131. Leskovec, J., & Mcauley, J. (2012). Learning to discover social circles in ego networks. Advances in Neural Information Processing Systems, 25.

  132. Rozemberczki, B., & Sarkar, R. (2020). Characteristic functions on graphs: Birds of a feather, from statistical descriptors to parametric models. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management.

  133. Jia, Y., Zhang, Q., Zhang, W., & Wang, X. (2019). Communitygan: Community detection with generative adversarial nets. The World Wide Web Conference.

  134. Sobolevsky, S., Campari, R., Belyi, A., & Ratti, C. (2014). General optimization technique for high-quality community detection in complex networks. Physical Review E, 90(1), 012811.

    Google Scholar 

  135. Tabrizi, S. A., Shakery, A., Asadpour, M., Abbasi, M., & Tavallaie, M. A. (2013). Personalized pagerank clustering: A graph clustering algorithm based on random walks. Physica A: Statistical Mechanics and its Applications, 392(22), 5772–5785.

    MathSciNet  MATH  Google Scholar 

  136. Zhang, X., Zhou, K., Pan, H., Zhang, L., Zeng, X., & Jin, Y. (2018). A network reduction-based multiobjective evolutionary algorithm for community detection in large-scale complex networks. IEEE Transactions on Cybernetics, 50(2), 703–716.

    Google Scholar 

  137. Satuluri, V., & Parthasarathy, S. (2009). Scalable graph clustering using stochastic flows: Applications to community discovery. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

  138. Wang, Z., Wang, C., Li, X., Gao, C., Li, X., & Zhu, J. (2020). Evolutionary Markov dynamics for network community detection. IEEE Transactions on Knowledge and Data Engineering, 34(3), 1206–1220.

  139. Cutello, V., Fargetta, G., Pavone, M., & Scollo, R. A. (2020). Optimization algorithms for detection of social interactions. Algorithms, 13(6), 139.

    MathSciNet  Google Scholar 

  140. Kang, Y., Xu, Z., Wang, H., Yuan, Y., Yang, X., & Pu, K. (2022). An improved Gray Wolf Optimization algorithm with a novel initialization method for community detection. Mathematics, 10(20), 3805.

    Google Scholar 

  141. LINQS. Retrieved December 2022 from https://linqs.org/datasets/

Download references

Acknowledgements

The authors would like to thank all anonymous reviewers for their valuable suggestions on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Nadimi-Shahraki.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadimi-Shahraki, M.H., Moeini, E., Taghian, S. et al. Discrete Improved Grey Wolf Optimizer for Community Detection. J Bionic Eng 20, 2331–2358 (2023). https://doi.org/10.1007/s42235-023-00387-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00387-1

Keywords

Navigation