Skip to main content
Log in

Influence of SiC Nanoparticles Reinforcement in Areca/Tamarind Hybrid Biopolymer Composites: Thermo-mechanical, Tribological and Morphological Features

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Natural fibers are displacing synthetic fibers as reinforcement in polymer composites due to their ease of processing, low cost, wide availability, biodegradability and sustainability. In this study, industrially discarded agro-waste areca fruit husk and tamarind fruit fibers were processed and used as reinforcement with unsaturated polyester resin to create a hybrid composite containing SiC nano filler particles. The SiC nano filler particles were varied from 1 to 4 wt.% in incremental steps of 1 wt.% with a constant 40 wt.% fiber reinforcement to determine its impact on the thermo-mechanical, morphological, wear and hygro-aging properties of the developed hybrid composite. However, the composite made of 3 wt.% SiC nano filler particles exposed overall better properties with better tensile (9.137 MPa), flexural (104.056 MPa), impact (7.983 J/cm2), hardness (91.577 HRRW), wear (2.2 × 10–6 µm), crystallite size (7.9 nm) and thermal stability (360 °C). Further advancement in weight percent of filler material, has worsened the properties due to poor dispersion and agglomeration factors by reducing the tensile, flexural, impact and hardness characteristics by 4.6%, 6.4%, 4.5% and 2.18% respectively. Also, the microstructural investigation revealed the failure pattern, information on interfacial adhesion between the reinforcement, filler and matrix of the hybrid composites. In addition, the crystalline characteristics and availability of functional groups in hybrid polymer composite with 3 wt.% SiC nano filler particles were disclosed by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectrum analysis, respectively. The above findings reflects that the produced hybrid polymer composites suits well for interiors of automobiles and maritime interior applications to support loads with in the specified range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Since it’s an ongoing study the research data cannot be shared at this point.

References

  1. Cai, M., Zhang, X., Sun, B. Z., Takagi, H., Waterhouse, G. I. N., & Li, Y. (2022). Durable mechanical properties of unidirectional flax fiber/phenolic composites under hydrothermal aging. Composites Science and Technology, 220, 109264. https://doi.org/10.1016/j.compscitech.2022.109264

    Article  Google Scholar 

  2. Sajin, J. B., Paul, R. C., Binoj, J. S., Mansingh, B. B., Selvan, M. G. A., Goh, K. L., Isaac, R. S. R., & Saravanan, M. S. S. (2022). Impact of fiber length on mechanical, morphological and thermal analysis of chemical treated jute fiber polymer composites for sustainable applications. Current Research in Green and Sustainable Chemistry, 5, e100241. https://doi.org/10.1016/j.crgsc.2021.100241

    Article  Google Scholar 

  3. Mansingh, B. B., Binoj, J. S., Hassan, S. A., Jaafar, M. M., Siengchin, S., Rangappa, S. M., Liu, Y., & Padmavathy, S. R. (2021). Characterization of chemically treated new natural cellulosic fiber from peduncle of Cocos Nucifera L. Var typica. Polymer Composites, 42(12), 6403–6416. https://doi.org/10.1002/pc.26307

    Article  Google Scholar 

  4. Negawo, T. A., Polat, Y., & Kilic, A. (2021). Effect of compatibilizer and fiber loading on ensete fiber-reinforced HDPE green composites: physical, mechanical, and morphological properties. Composites Science and Technology, 213, 108937. https://doi.org/10.1016/j.compscitech.2021.108937

    Article  Google Scholar 

  5. Mansingh, B. B., Binoj, J. S., Hassan, S. A., Jaafar, M. M., Siengchin, S., Rangappa, S. M., & Nagaraj, B. K. (2021). Characterization of natural cellulosic fiber from cocos nucifera peduncle for sustainable biocomposites. Journal of Natural Fibers, 19(14), 9373–9383. https://doi.org/10.1080/15440478.2021.1982827

    Article  Google Scholar 

  6. Kazi, M. K., Eljack, F., & Mahdi, E. (2020). Predictive ANN models for varying filler content for cotton fiber/PVC composites based on experimental load displacement curves. Composite Structures, 254, 112885. https://doi.org/10.1016/j.compstruct.2020.112885

    Article  Google Scholar 

  7. Mansingh, B. B., Binoj, J. S., Sai, N. P., Hassan, S. A., Siengchin, S., Rangappa, S. M., & Liu, Y. C. (2021). Sustainable development in utilization of Tamarindus indica L. and its by-products in industries: A Review. Current Research in Green and Sustainable Chemistry, 4, e100207. https://doi.org/10.1016/j.crgsc.2021.100207

    Article  Google Scholar 

  8. Vardai, R., Lummerstorfer, T., Pretschuh, C., Jerabek, M., Gahleitner, M., Bartos, A., Moczo, J., & Anggono, J. (2021). Improvement of the impact resistance of natural fiber–reinforced polypropylene composites through hybridization. Polymers Advanced Technologies., 32(6), 2499–2507. https://doi.org/10.1002/pat.5280

    Article  Google Scholar 

  9. Feng, N. L., Malingam, S. D., Ping, C. W., & Razali, N. (2020). Mechanical properties and water absorption of kenaf/pineapple leaf fiber-reinforced polypropylene hybrid composites. Polymer Composites, 41(4), 1255–1264. https://doi.org/10.1002/pc.25451

    Article  Google Scholar 

  10. Zhu, H., Gu, Y., Yang, Z., Li, Q., Li, M., Wang, S., & Zhang, Z. (2020). Fiber distribution of long fiber reinforced polyamide and effect of fiber orientation on mechanical behavior. Polymer Composites, 41(4), 1531–1550. https://doi.org/10.1002/pc.25476

    Article  Google Scholar 

  11. Hassan, S. A., Binoj, J. S., Goh, K. L., Mansingh, B. B., Varaprasad, K. C., Yahya, M. Y., Othman, F., Ahmed, U., Nurhadiyanto, D., Yono, N., & Wulandari, A. P. (2022). Effect of fiber stacking sequence and orientation on quasi- static indentation properties of sustainable hybrid carbon/ramie fiber epoxy composites. Current Research in Green and Sustainable Chemistry, 5, e100284. https://doi.org/10.1016/j.crgsc.2022.100284

    Article  Google Scholar 

  12. Imoisili, P. E., & Jen, T. C. (2020). Mechanical and water absorption behaviour of potassium permanganate (KMnO4) treated plantain (Musa Paradisiacal) fiber/epoxy bio-composites. Journal of Materials Research and Technology, 9(4), 8705–8713. https://doi.org/10.1016/j.jmrt.2020.05.121

    Article  Google Scholar 

  13. Vinod, A., Rangappa, S. M., & Siengchin, S. (2021). Fatigue and thermo-mechanical properties of chemically treated Morinda citrifolia fiber-reinforced bio-epoxy composite: A sustainable green material for cleaner production. Journal of Cleaner Production, 326, 129411. https://doi.org/10.1016/j.jclepro.2021.129411

    Article  Google Scholar 

  14. Asim, M., Jawaid, M., Fouad, H., & Alothman, O. Y. (2021). Effect of surface modified date palm fibre loading on mechanical, thermal properties of date palm reinforced phenolic composites. Composite Structures, 267, 113913. https://doi.org/10.1016/j.compstruct.2021.113913

    Article  Google Scholar 

  15. Binoj, J. S., Raj, R. E., Daniel, B. S. S., & Saravanakumar, S. S. (2017). Optimization of short Indian Areca fruit husk fiber (Areca catechu L)–reinforced polymer composites for maximizing mechanical properties. International Journal of Polymer Analysis and Characterization, 21(2), 112–122. https://doi.org/10.1080/1023666X.2016.1110765

    Article  Google Scholar 

  16. Thooyavan, Y., Kumaraswamidhas, L. A., Raj, R. E., Binoj, J. S., & Mansingh, B. B. (2022). Failure analysis of basalt bidirectional mat reinforced micro/nano SiC particle filled vinyl ester polymer composites. Engineering Failure Analysis, 136, 106227. https://doi.org/10.1016/j.engfailanal.2022.106227

    Article  Google Scholar 

  17. Binoj, J. S., Manikandan, N., Mansingh, B. B., Anbazhagan, V. N., Bharathiraja, G., Rangappa, S. M., Siengchin, S., & Indran, S. (2022). Taguchi’s optimization of areca fruit husk fiber mechanical properties for polymer composite applications. Fibers and Polymers, 23, 3207–3213. https://doi.org/10.1007/s12221-022-0365-2

    Article  Google Scholar 

  18. Mansingh, B. B., Binoj, J. S., Tan, Z. Q., Eugene, W. W. L., Amornsakchai, T., Hassan, S. A., & Goh, K. L. (2022). Comprehensive characterization of raw and treated pineapple leaf fiber/PLA green composites manufactured by 3D printing technique. Polymer Composites, 43(9), 6051–6061. https://doi.org/10.1002/pc.26906

    Article  Google Scholar 

  19. Karthik, K., Prakash, J. U., Binoj, J. S., & Mansingh, B. B. (2022). Effect of stacking sequence and SiC nanoparticles on properties of carbon/glass/kevlar fiber reinforced hybrid polymer composites. Polymer Composites, 43(9), 6096–6105. https://doi.org/10.1002/pc.26912

    Article  Google Scholar 

  20. Kumar, S. S., & Raja, V. M. (2021). Processing and determination of mechanical properties of Prosopis juliflora bark, banana and coconut fiber reinforced hybrid bio composites for an engineering field. Composites Science and Technology., 208, 108695. https://doi.org/10.1016/j.compscitech.2021.108695

    Article  Google Scholar 

  21. Samouh, Z., Molnar, K., Boussu, F., Cherkaoui, O., & Moznine, R. E. (2019). Mechanical and thermal characterization of sisal fiber reinforced polylactic acid composites. Polymers Advanced Technologies., 30(3), 529–537. https://doi.org/10.1002/pat.4488

    Article  Google Scholar 

  22. Hanan, U. A., Hassan, S. A., Wahit, M. U., Binoj, J. S., Mansingh, B. B., & Goh, K. L. (2022). Experimentation, optimization and predictive analysis of compressive behavior of montmorillonite nano-clay/unsaturated polyester composites. Polymer Composites. https://doi.org/10.1002/pc.27041

    Article  Google Scholar 

  23. Cui, X., Liu, J., Ma, L., Wang, X., Zheng, Y., Wang, X., & Wu, G. (2020). Grafting of the hierarchical natural tannic acid and polyethyleneimine on to carbon fiber for significantly improved surface/interface properties. Polymers Advanced Technologies., 31(12), 3126–3133. https://doi.org/10.1002/pat.5037

    Article  Google Scholar 

  24. Gara, D. K., Raghavendra, G., Prasad, P. S., & Ojha, S. (2021). Enhanced mechanical properties of glass fibre epoxy composites by 2D exfoliated graphene oxide filler. Ceramics International., 47(24), 34860–34868. https://doi.org/10.1016/j.ceramint.2021.09.027

    Article  Google Scholar 

  25. Selvan, M. T. G. A., Binoj, J. S., Mansingh, B. B., & Sajin, J. A. B. (2022). Physico-Chemical Properties of Alkali Treated Cellulosic Fibers from Fragrant Screw Pine Prop Root. Journal of Natural Fibers., 20(1), 2129897. https://doi.org/10.1080/15440478.2022.2129897

    Article  Google Scholar 

  26. Mansingh, B. B., Binoj, J. S., Siengchin, S., & Sanjay, M. R. (2022). Influence of surface treatment on properties of Cocos nucifera L Var typica fiber reinforced polymer composites. Journal of Applied Polymer Science., 140(3), e53345. https://doi.org/10.1002/app.53345

    Article  Google Scholar 

  27. Wang, J., Shi, H., Zhu, P., Wei, Y., Wei, P., & Hao, J. (2020). Effect of natural basalt fiber for EVA composites with nickel alginate-brucite based flame retardant on improving fire safety and mechanical properties. Polymers Advanced Technologies., 31(4), 713–721. https://doi.org/10.1002/pat.4807

    Article  Google Scholar 

  28. Thooyavan, Y., Kumaraswamidhas, L. A., Raj, R. E., Binoj, J. S., & Mansingh, B. B. (2022). Effect of combined micro and nano SiC particles addition on mechanical, wear and moisture absorption features of basalt bidirectional mat/vinyl ester composites. Polymer Composites., 43(5), 2574–2583. https://doi.org/10.1002/pc.26557

    Article  Google Scholar 

  29. Mansingh, B. B., Binoj, J. S., Anbazhagan, V. N., Hassan, S. A., Goh, K. L., Siengchin, S., Sanjay, M. R., Jaafar, M. M., & Liu, Y. C. (2022). Characterization of Cocos nucifera L peduncle fiber reinforced polymer composites for lightweight sustainable applications. Journal of Applied Polymer Science., 139(22), e52245. https://doi.org/10.1002/app.52245

    Article  Google Scholar 

  30. Xiong, T., Wang, N., Liao, J., & Zhang, Y. (2021). Modified boron nitride-basalt fiber/epoxy resin composite laminates and their enhanced mechanical properties. Polymers Advanced Technologies., 32(9), 3621–3632. https://doi.org/10.1002/pat.5370

    Article  Google Scholar 

  31. Binoj, J. S., Raj, R. E., & Indran, S. (2018). Characterization of industrial discarded fruit wastes (Tamarindus Indica L.) as potential alternate for man-made vitreous fiber in polymer composites. Process Safety and Environmental Protection., 116, 527–534. https://doi.org/10.1016/j.psep.2018.02.019

    Article  Google Scholar 

  32. Wei, C., Wang, W., Liu, H., Qin, A., Yu, C., & Wang, B. (2017). Mechanical properties of phenol/formaldehyde resin composites reinforced by cellulose microcrystal with different aspect ratio extracted from sisal fiber. Polymers Advanced Technologies., 28(8), 1013–1019. https://doi.org/10.1002/pat.3831

    Article  Google Scholar 

  33. Revol, B. P., Vauthier, M., Thomassey, M., Bouquey, M., Ruch, F., & Nardin, M. (2021). Design of experience to evaluate the Interfacial compatibility on high tenacity viscose fibers reinforced Polyamide-6 composites. Composites Science and Technology., 203, 108615. https://doi.org/10.1016/j.compscitech.2020.108615

    Article  Google Scholar 

  34. Baia, T., Wang, D., Yana, J., Cheng, W., Cheng, W., Shi, S. Q., Wang, G., & Han, G. (2021). Wetting mechanism and interfacial bonding performance of bamboo fiber reinforced epoxy resin composites. Composites Science and Technology., 213, 108951. https://doi.org/10.1016/j.compscitech.2021.108951

    Article  Google Scholar 

  35. Zeng, D., Lv, J., Wei, C., & Yu, C. (2015). Dynamic mechanical properties of sisal fiber cellulose microcrystalline/unsaturated polyester in-situ composites. Polymers Advanced Technologies., 26(11), 1351–1355. https://doi.org/10.1002/pat.3651

    Article  Google Scholar 

  36. Wang, J., Zhou, H., Liu, Z., Peng, Z., & Zhou, H. (2022). Statistical modelling of tensile properties of natural fiber yarns considering probability distributions of fiber crimping and effective yarn elastic modulus. Composites Science and Technology., 218, 109142. https://doi.org/10.1016/j.compscitech.2021.109142

    Article  Google Scholar 

  37. Asim, M., Jawaid, M., Fouad, H., & Alothman, O. Y. (2021). Effect of surface modified date palm fiber loading on mechanical, thermal properties of date palm reinforced phenolic composites. Composite Structures., 267, 113913. https://doi.org/10.1016/j.compstruct.2021.113913

    Article  Google Scholar 

  38. Narayanasamy, P., Balasundar, P., Senthil, S., Sanjay, M. R., Siengchin, S., Khan, A., & Asiri, A. M. (2020). Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for eco-friendly polymer composites. International Journal of Biological Macromolecules., 150, 793–801. https://doi.org/10.1016/j.ijbiomac.2020.02.134

    Article  Google Scholar 

  39. Siva, R., Valarmathi, T. N., Palanikumar, K., & Samrot, A. V. (2020). Study on a Novel natural cellulosic fiber from Kigelia africana fruit: Characterization and analysis. Carbohydrate Polymers., 244, 116494. https://doi.org/10.1016/j.carbpol.2020.116494

    Article  Google Scholar 

  40. Bongiorno, F., Militello, C., & Zuccarello, B. (2022). Mode I translaminar fracture toughness of high performance laminated biocomposites reinforced by sisal fibers: Accurate measurement approach and lay-up effects. Composites Science and Technology., 217, 109089. https://doi.org/10.1016/j.compscitech.2021.109089

    Article  Google Scholar 

  41. Kuriakose, V. M., Sai, P. R., Kumar, M. S., & Sreehari, V. M. (2022). Influence of CNT fillers in the vibration characteristics of natural fiber reinforced composite plates. Composite Structures, 282, 115012. https://doi.org/10.1016/j.compstruct.2021.115012

    Article  Google Scholar 

  42. Mazur, K. E., Jakubowska, P., Gaweł, A., & Kuciel, S. (2022). Mechanical, thermal and hydrodegradation behavior of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites with agricultural fibers as reinforcing fillers. Sus Mat Technol., 31, e00390. https://doi.org/10.1016/j.susmat.2022.e00390

    Article  Google Scholar 

  43. Ganesan, K., Kailasanathan, C., Rajini, N., Ismail, S. O., Ayrilmis, N., Mohammad, F., Lohedan, H. A. A., Tawfeek, A. M., Issa, Z. A., & Aldhayan, D. M. (2021). Assessment on hybrid jute/coir fibers reinforced polyester composite with hybrid fillers under different environmental conditions. Construction and Building Materials., 301, 124117. https://doi.org/10.1016/j.conbuildmat.2021.124117

    Article  Google Scholar 

  44. Xu, J., Hao, X., Tang, W., Zhou, H., Chen, L., Guo, C., Wang, Q., & Ou, R. (2021). Mechanical properties, morphology, and creep resistance of ultra-highly filled bamboo fiber/polypropylene composites: Effects of filler content and melt flow index of polypropylene. Construction and Building Materials., 310, 125289. https://doi.org/10.1016/j.conbuildmat.2021.125289

    Article  Google Scholar 

  45. Ji, M., Li, F., Li, J., Li, J., Zhang, C., Sun, K., & Guo, Z. (2021). Enhanced mechanical properties, water resistance, thermal stability, and biodegradation of the starch-sisal fibre composites with various fillers. Materials & Design., 198, 109373. https://doi.org/10.1016/j.matdes.2020.109373

    Article  Google Scholar 

  46. Kamble, Z., Behera, B. K., Mishra, R., & Behera, P. K. (2021). Influence of cellulosic and non-cellulosic particle fillers on mechanical, dynamic mechanical, and thermogravimetric properties of waste cotton fibre reinforced green composites. Composites Part B: Engineering., 207, 108595. https://doi.org/10.1016/j.compositesb.2020.108595

    Article  Google Scholar 

  47. Nampitch, T. (2021). Mechanical, thermal and morphological properties of polylactic acid/natural rubber/bagasse fiber composite foams. Results in Materials., 12, 100225. https://doi.org/10.1016/j.rinma.2021.100225

    Article  Google Scholar 

  48. Jawaid, M., Awad, S., Asim, F. M., Saba, N., & Dhakal, H. N. (2021). Improvements in the thermal behaviour of date palm/bamboo fibres reinforced epoxy hybrid composites. Composite Structures., 277, 114644. https://doi.org/10.1016/j.compstruct.2021.114644

    Article  Google Scholar 

  49. Niyasom, S., & Tangboriboon, N. (2021). Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction. Construction and Building Materials., 283, 122627. https://doi.org/10.1016/j.conbuildmat.2021.122627

    Article  Google Scholar 

  50. Dhir, D. K., Osmond, R., Golovin, O. K., & Milani,., A. S. (2022). A high-performance hybrid green composite using plastinated bamboo fillers, with reduced environmental degradation effect. Composite Structures., 282, 115123. https://doi.org/10.1016/j.compstruct.2021.115123

    Article  Google Scholar 

  51. Chaturvedi, R., Pappu, A., Tyagi, P., Patidar, R., Khan, A., Mishra, A., Gupta, M. K., & Thakur, V. K. (2022). Next-generation high-performance sustainable hybrid composite materials from silica-rich granite waste particulates and jute textile fibres in epoxy resin. Industrial Crops and Products., 177, 114527. https://doi.org/10.1016/j.indcrop.2022.114527

    Article  Google Scholar 

  52. Lin, J., Guo, Z., Hong, B., Xu, J., Fan, Z., Lu, G., Wang, D., & Oeser, M. (2022). Using recycled waste glass fiber reinforced polymer (GFRP) as filler to improve the performance of asphalt mastics. Journal of Cleaner Production, 336, 130357. https://doi.org/10.1016/j.jclepro.2022.130357

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GH: investigation (lead); validation (supporting); writing—review and editing (supporting). PCK: writing—review and editing (supporting). JSB: resources (lead); writing—original draft (lead). BBM: writing; review and editing (equal).

Corresponding author

Correspondence to Joseph Selvi Binoj.

Ethics declarations

Conflict of Interest

The authors state that they have no known competing financial interests or personal ties that could be perceived as having influenced the work described in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariharan, G., Krishnamachary, P.C., Binoj, J.S. et al. Influence of SiC Nanoparticles Reinforcement in Areca/Tamarind Hybrid Biopolymer Composites: Thermo-mechanical, Tribological and Morphological Features. J Bionic Eng 20, 1723–1736 (2023). https://doi.org/10.1007/s42235-023-00341-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00341-1

Keywords

Navigation