Skip to main content
Log in

Growth Ring-dependent Fracture Toughness of Sea Urchin Spines Estimated by Boundary Effect Model

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Although the fracture behavior of sea urchin spines has been extensively investigated, there is as yet a lack of quantitative estimation on the effect of growth rings on the fracture properties of sea urchin spines. In sea urchin spines, much denser pores present in growth rings rather than porous layers. The tensile strength and fracture toughness of sea urchin spine samples with different numbers of growth rings are measured by the Boundary Effect Model (BEM). The experimental results of single-edge notched three-point bending tests indicate that the BEM is an appropriate method to estimate the fracture toughness of the present porous sea urchin spines, and the number of growth rings plays an important role in the fracture properties of spines. Specifically, the tensile strength and fracture toughness of sea urchin spines can be significantly improved with the increase in the number of growth rings, and their fracture toughness can even reach a relatively high value compared with some other porous materials with an identical porosity. The present research findings are expected to provide a fundamental insight into the design of high-performance bionic materials with a highly porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Schultz, H. (2006). Sea Urchins: a guide to worldwide shallow water species. Heinke & Peter Schutz Partner. Hemdingen.

  2. Magdans, U. (2005). Mechanisms of Biomineralization of Calcite. PhD thesis. Ruhr-Universität Bochum. (in German)

  3. Magdans, U., & Gies, H. (2004). Single crystal structure analysis of sea urchin spine calcites: Systematic investigations of the Ca/Mg distribution as a function of habitat of the sea urchin and the sample location in the spine. European Journal of Mineralogy, 16, 261–268.

    Article  Google Scholar 

  4. Weber, J. N. (1969). Incorporation of magnesium into the skeletal calcites of echinoderms. American Journal of Science, 267, 537–566.

    Article  Google Scholar 

  5. Cölfen, H., & Antonietti, M. (2008). Mesocrystals and nonclassical crystallization. John Wiley and Sons Ltd.

    Book  Google Scholar 

  6. Weber, J., Greer, R., Voight, B., White, E., & Roy, R. (1969). Unusual strength properties of echinoderm calcite related to structure. Journal of Ultrastructure Research, 26, 355–366.

    Article  Google Scholar 

  7. Smith, A. B. (1980). Stereom microstructure of the echinoid test. Special Papers in Palaeontology, 25, 1–81.

    Google Scholar 

  8. Ma, Y., Cohen, S. R., Addadi, L., & Weiner, S. (2008). Sea urchin tooth design: An “all-calcite” polycrystalline reinforced fiber composite for grinding rocks. Advanced Materials, 20, 1555–1559.

    Article  Google Scholar 

  9. Donnay, G., & Pawson, D. L. (1969). X-ray diffraction studies of echinoderm plates. Science, 166(3909), 1147–1150.

    Article  Google Scholar 

  10. West, C. D. (1937). Note on the crystallography of the echinoderm skeleton. Journal of Paleontology, 11, 458–459.

    Google Scholar 

  11. Hessel, D. J. F. C. (1826). Influence of the Organic Body on the Inorganic. Johann Chrisitian Krieger. in German.

    Google Scholar 

  12. Märkel, K., Kubanek, F., & Willgallis, A. (1971). Polycrystalline calcite in sea urchins (Echinodermata, Echinoidea). Zeitschrift für Zellforschung und mikroskopische Anatomie (Vienna, Austria: 1948), 119, 355–377.

    Article  Google Scholar 

  13. Meldrum, F. C., & Cölfen, H. (2008). Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Reviews, 108, 4332–4432.

    Article  Google Scholar 

  14. Sethmann, I., Putnis, A., Grassmann, O., & Löbmann, P. (2005). Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: A close match for biomineralization. American Mineralogist, 90, 1213–1217.

    Article  Google Scholar 

  15. Oaki, Y., & Imai, H. (2006). Nanoengineering in echinoderms: The emergence of morphology from nanobricks. Small (Weinheim an der Bergstrasse, Germany), 2, 66–70.

    Article  Google Scholar 

  16. Kaplan, M. F. (1961). Crack propagation and the fracture of concrete. Journal Proceedings, 58(11), 591–610.

    Google Scholar 

  17. Walsh, P. F. (1972). Fracture of plain concrete. Engineering Fracture Mechanics, 11, 533–541.

  18. Higgins, D. D., & Bailey, J. E. (1976). Fracture measurements on cement paste. Journal of Materials Science, 11, 1995–2003.

    Article  Google Scholar 

  19. Mindess, S. (1984). The effect of specimen size on the fracture energy of concrete. Cement and Concrete Research, 14, 431–436.

    Article  Google Scholar 

  20. Bažant, Z. P., & Pfeiffer, P. A. (1987). Determination of fracture energy from size effect and brittleness number. ACI Material Journal, 84, 463–480.

    Google Scholar 

  21. Bažant, Z. P. (1999). Size effect on structural strength: A review. Archive of Applied Mechanics, 69, 703–725.

    Article  Google Scholar 

  22. Liu, W., Yu, Y., Hu, X. Z., Han, X. Y., & Xie, P. (2019). Quasi-brittle fracture criterion of bamboo-based fiber composites in transverse direction based on boundary effect model. Composite Structures, 220, 347–354.

    Article  Google Scholar 

  23. Duan, K., & Hu, X. Z. (2004). Specimen boundary induced size effect on quasi-brittle fracture. Strength, Fracture and Complexity, 2, 47–68.

    Google Scholar 

  24. Hu, X. Z., & Duan, K. (2008). Size effect and quasi-brittle fracture: The role of FPZ. International Journal of Fracture, 154, 3–14.

    Article  Google Scholar 

  25. Bažant, Z. P. (1984). Size effect in blunt fracture: Concrete, rock, metal. Journal of Engineering Mechanics, 110, 518–535.

    Article  Google Scholar 

  26. Hu, X. Z., & Wittmann, F. H. (1992). Fracture energy and fracture process zone. Materials and Structures, 25, 319–326.

    Article  Google Scholar 

  27. Wang, Y. S., & Hu, X. Z. (2017). Determination of tensile strength and fracture toughness of granite using notched three-point bend samples. Rock Mechanics and Rock Engineering, 50, 17–28.

    Article  Google Scholar 

  28. Zhang, C. G., Hu, X. Z., Sercombe, T., Li, Q. B., Wu, Z. M., & Lu, P. M. (2018). Prediction of ceramic fracture with normal distribution pertinent to grain size. Acta Materialia, 145, 41–48.

    Article  Google Scholar 

  29. Zhang, C. G., Hu, X. Z., Wu, Z. M., & Li, Q. B. (2018). Influence of grain size on granite strength and toughness with reliability by normal distribution. Theoretical and Applied Fracture Mechanics, 96, 534–544.

    Article  Google Scholar 

  30. Hu, X. Z., Guan, J. F., Wang, Y. S., Keating, A., & Yang, S. T. (2017). Comparison of boundary and size effect models based on new developments. Engineering Fracture Mechanics, 175, 146–167.

    Article  Google Scholar 

  31. Hu, X. Z., Li, Q. B., Wu, Z. M., & Yang, S. T. (2022). Modelling fracture process zone width and length for quasi-brittle fracture of rock, concrete and ceramics. Engineering Fracture Mechanics, 259, 108158.

    Article  Google Scholar 

  32. Chen, Y., Hu, X. Z., & Liu, W. (2022). Modelling of bone fracture using the fundamental functional unit–Osteon. Theoretical and Applied Fracture Mechanics, 118, 103216.

    Article  Google Scholar 

  33. Tada, H., Paris, P. C., & Irwin, G. R. (2000). The stress analysis of cracks handbook. ASME Press.

    Book  Google Scholar 

  34. Guan, J. F., Hu, X. Z., & Li, Q. B. (2016). In-depth analysis of notched 3-p-b concrete fracture. Engineering Fracture Mechanics, 165, 57–71.

    Article  Google Scholar 

  35. Wang, Y. S., Hu, X. Z., Liang, L., & Zhu, W. C. (2016). Determination of tensile strength and fracture toughness of concrete using notched 3-p-b specimens. Engineering Fracture Mechanics, 160, 67–77.

    Article  Google Scholar 

  36. Wang, B. H., Hu, X. Z., & Lu, P. M. (2020). Modelling and testing of large-scale masonry elements under three-point bending—Tough and strong nacre-like structure enlarged by a factor of 20,000. Engineering Fracture Mechanics, 229, 106961.

    Article  Google Scholar 

  37. Guan, J. F., Yuan, P., Hu, X. Z., Qing, L. B., & Yao, X. H. (2019). Statistical analysis of concrete fracture using normal distribution pertinent to maximum aggregate size. Theoretical and Applied Fracture Mechanics, 101, 236–253.

    Article  Google Scholar 

  38. Deng, Z. Y., Fukasawa, T., Ando, M., Zhang, G. J., & Ohji, T. (2011). Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide. Journal of the American Ceramic Society, 84, 2638–2644.

    Article  Google Scholar 

  39. Hong, C. Q., Zhang, X. H., Han, J. C., & Wang, B. L. (2006). Fabrication and mechanical properties of porous TiB2 ceramic. Journal of Materials Science, 41, 4790–4794.

    Article  Google Scholar 

  40. Yeni, Y. N., Brown, C. U., Wang, Z., & Norman, T. L. (1997). The influence of bone morphology on fracture toughness of the human femur and tibia. Bone, 21, 453–459.

    Article  Google Scholar 

  41. Samborski, S., & Sadowski, T. (2010). Dynamic fracture toughness of porous ceramics. Journal of the American Ceramic Society, 93, 3607–3609.

    Article  Google Scholar 

  42. Presser, V., Schultheiß, S., Berthold, C., & Nickel, K. G. (2009). Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. Journal of Bionic Engineering, 6, 203–213.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant No. 51902043], and the Fundamental Research Funds for the Central Universities [Grant No. N2102007, and N2102002]. This work was also partially supported by the National Natural Science Foundation of China [Grant Nos. 51871048 and 52171108].

Funding

This work was funded by National Natural Science Foundation of China (Grant no. 51902043, 51871048, 52171108); Fundamental Research Funds for the Central Universities (Grant no. N2102007, N2102002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmei Ji or Xiaowu Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liang, S., Li, Y. et al. Growth Ring-dependent Fracture Toughness of Sea Urchin Spines Estimated by Boundary Effect Model. J Bionic Eng 19, 1472–1480 (2022). https://doi.org/10.1007/s42235-022-00200-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00200-5

Keywords

Navigation