Skip to main content
Log in

Nano Calcium-Deficient Hydroxyapatite/O-carboxymethyl Chitosan-CaCl2 Microspheres Loaded with Rhein for Bone Defect Repair

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Glutaraldehyde (GA), the most widely used crosslinking agent for biomaterials, is cytotoxic. CaCl2 is of particular interest due to its non-toxic nature. Rhein can chelate Ca2+ and promote bone growth. Here we reported a novel nano calcium-deficient hydroxyapatite/O-carboxymethyl chitosan-CaCl2 microspheres loaded with rhein (RH-nCDHA/OCMC-CaCl2 microspheres) using CaCl2 as crosslinking agent for bone defect repair. The obtained microspheres were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR). The surface of the obtained microspheres is rough with quite a few voids. The nano calcium-deficient hydroxyapatite (nCDHA) accounts for about 70% of the total weight of the microspheres, which is equivalent to the proportion of inorganic substances in human bones. A high encapsulation efficiency (EE) and loading capacity (LC) of the microspheres loaded with rhein was 90.20 ± 0.60% and 11.03 ± 0.30%, respectively. For microspheres using CaCl2 in simulated body fluid (SBF) after 14 days, the drug released continuously and bone-like apatite formed like layer. The cells on the surface of the RH-nCDHA/OCMC-CaCl2 microspheres grew better comparing with nCDHA/OCMC-GA microspheres and the skull defects of rats after landfill can be almost repaired after 8 weeks, which revealed the potential of the microspheres for bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rozalia, D., Elena, J., Dennis, M., & Peter, V. (2011). Bone regeneration: Current concepts and future directions. BMC Medicine, 9(1), 66.

    Article  Google Scholar 

  2. Campana, V., Milano, G., Pagano, E., Barba, M., Cicione, C., Salonna, G., Lattanzi, W., & Logroscino, G. (2014). Bone substitutes in orthopaedic surgery: From basic science to clinical practice. Journal of Materials Science. Materials in Medicine, 25(10), 2445–2461.

    Article  Google Scholar 

  3. Sánchez-Ferrero, A., Mata, Á., Mateos-Timoneda, M. A., Rodríguez-Cabello, J. C., Alonso, M., Planell, J., & Engel, E. (2015). Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration. Biomaterials, 68, 42–53.

    Article  Google Scholar 

  4. Chen, G. Q., Deng, C. X., & Li, Y. P. (2012). TGF-β and BMP signaling in osteoblast differentiation and bone formation. International Journal of Biological Sciences, 8(2), 272–288.

    Article  Google Scholar 

  5. Han, G., Su, J., Jie, W., Kong, H., & Liu, C. (2009). Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering. Acta Biomaterialia, 5(1), 268–278.

    Article  Google Scholar 

  6. Winand, L., & Dallemagne, M. J. (1962). Hydrogen bonding in the calcium phosphates. Nature, 193(4813), 369–370.

    Article  Google Scholar 

  7. Yu, M., Zhou, K., Li, Z., & Zhang, D. (2014). Preparation, characterization and in vitro gentamicin release of porous HA microspheres. Materials Science and Engineering C, 45, 306–312.

    Article  Google Scholar 

  8. Lee, J., & Kim, G. (2018). Calcium-deficient hydroxyapatite/collagen/platelet-rich plasma scaffold with controlled release function for hard tissue regeneration. ACS Biomaterials Science & Engineering, 4(1), 278–289.

    Article  Google Scholar 

  9. Zhao, J., Wang, S. Y., Bao, J. Q., Sun, X. J., Zhang, X. C., Zhang, X. L., Ye, D. X., Wei, J., Liu, C. S., Jiang, X. Q., Shen, G., & Zhang, Z. Y. (2013). Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo. PLoS ONE, 8(1), e54645.

    Article  Google Scholar 

  10. Liu, T. Y., Chen, S. Y., Li, J. H., & Liu, D. M. (2006). Study on drug release behaviour of CDHA/chitosan nanocomposites-effect of CDHA nanoparticles. Journal of Controlled Release, 112(1), 88–95.

    Article  Google Scholar 

  11. Paul, W., & Sharma, C. P. (1999). Development of porous spherical hydroxyapatite granules: Application towards protein delivery. Journal of Materials Science. Materials in Medicine, 10(7), 383–388.

    Article  Google Scholar 

  12. Wei, P. F., Yuan, Z. Y., Jing, W., Guan, B. B., Liu, Z. H., Zhang, X., Mao, J. P., Chen, D. F., Cai, Q., & Yang, X. P. (2019). Regenerating infected bone defects with osteocompatible microspheres possessing antibacterial activity. Biomater Sci, 7(1), 272–286.

    Article  Google Scholar 

  13. Reddy, N., Reddy, R., & Jiang, Q. R. (2015). Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 33(6), 362–369.

    Article  Google Scholar 

  14. Hennink, W. E., & van Nostrum, C. F. (2012). Novel crosslinking methods to design hydrogels. Adv Drug Del Rev, 64, 223–236.

    Article  Google Scholar 

  15. Slezak, P., Klang, A., Ferguson, J. C., Schmidt, P., & Gulle, H. (2019). Tissue reaction to a polyethylene glycol-based and glutaraldehyde-based surgical sealant in a rabbit aortic anastomosis model. Journal of the American College of Surgeons, 229(4), e211–e212.

    Article  Google Scholar 

  16. Fukunaga, N., Matsuo, T., Saji, Y., Imai, Y., & Koyama, T. (2015). Mitral valve stenosis progression due to severe calcification on glutaraldehyde-treated autologous pericardium: Word of caution for an attractive repair technique. Annals of Thoracic Surgery, 99(6), 2203–2205.

    Article  Google Scholar 

  17. Kalliola, S., Repo, E., Srivastava, V., Heiskanen, J. P., Sirviö, J. A., Liimatainen, H., & Sillanpää, M. (2017). The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions. Coll Surf B Biointerf, 153, 229–236.

    Article  Google Scholar 

  18. Anitha, A., Maya, S., Deepa, N., Chennazhi, K. P., Nair, S. V., Tamura, H., & Jayakumar, R. (2011). Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydrate Polymers, 83(2), 452–461.

    Article  Google Scholar 

  19. You, X., Feng, S., Luo, S. L., Cong, D. D., Yu, Z. W., Yang, Z. R., & Zhang, J. (2013). Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L. Fitoterapia, 85, 161–168.

    Article  Google Scholar 

  20. Xu, X., Qi, X. Y., Yan, Y. F., Qi, J., Qian, N. D., Guo, L., Li, C. W., Wang, F., Huang, P., Zhou, H. B., Jiang, M., Yang, C. H., & Deng, L. F. (2016). Synthesis and biological evaluation of rhein amides as inhibitors of osteoclast differentiation and bone resorption. European Journal of Medicinal Chemistry, 123, 769–776.

    Article  Google Scholar 

  21. Wang, Y., Li, L. Z., Zhang, Y. L., Sun, W. J., Zhu, Y. Q., Cui, Y., & Qi, L. (2011). LC, a novel estrone–rhein hybrid compound, promotes proliferation and differentiation and protects against cell death in human osteoblastic MG-63 cells. Molecular and Cellular Endocrinology, 344(1), 59–68.

    Article  Google Scholar 

  22. Wang, Y., Li, L. Z., Zhang, Y. L., Zhu, Y. Q., Wu, J., & Sun, W. J. (2011). LC, a novel estrone–rhein hybrid compound, concurrently stimulates osteoprotegerin and inhibits receptor activator of NF-κB ligand (RANKL) and interleukin-6 production by human osteoblastic cells. Molecular and Cellular Endocrinology, 337(1), 43–51.

    Article  Google Scholar 

  23. Sambudi, N. S., Cho, S., & Cho, K. (2016). Porous hollow hydroxyapatite microspheres synthesized by spray pyrolysis using a microalga template: Preparation, drug delivery, and bioactivity. RSC Advances, 6(49), 43041–43048.

    Article  Google Scholar 

  24. Li, H. Y., Li, J. Y., & Ye, J. D. (2016). Construction and properties of poly( lactic-co-glycolic acid )/calcium phosphate cement composite pellets with microspheres-in-pellet structure for bone repair. Ceramics International, 42(4), 5587–5592.

    Article  Google Scholar 

  25. Ji, J. G., Ran, J. G., Gou, L., Wang, F. H., Chen, S. Q., & Fu, X. N. (2003). Study on the preparation of HA/ beta TCP biphasic bioceramics powder by coprecipitation. Journal of Functional Materials, 34(5), 597–599.

    Google Scholar 

  26. Wang, K., Wang, Y. J., Zhao, X., Li, Y., Yang, T., Zhang, X., & Wu, X. G. (2017). Sustained release of simvastatin from hollow carbonated hydroxyapatite microspheres prepared by aspartic acid and sodium dodecyl sulfate. Materials Science and Engineering C, 75, 565–571.

    Article  Google Scholar 

  27. Izadpanah, R., Trygg, C., Patel, B., Kriedt, C., Dufour, J., Gimble, J. M., & Bunnell, B. A. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 99(5), 1285–1297.

    Article  Google Scholar 

  28. Huang, K.-C., Yano, F., Murahashi, Y., Takano, S., Kitaura, Y., Chang, S. H., Soma, K., Ueng, S. W. N., Tanaka, S., Ishihara, K., Okamura, Y., Moro, T., & Saito, T. (2017). Sandwich-type PLLA-nanosheets loaded with BMP-2 induce bone regeneration in critical-sized mouse calvarial defects. Acta Biomaterialia, 59, 12–20.

    Article  Google Scholar 

  29. Zhang, W., Yu, Z. L., Wu, M., Ren, J. G., Xia, H. F., Sa, G. L., Zhu, J. Y., Pang, D. W., Zhao, Y. F., & Chen, G. (2017). Magnetic and folate functionalization enables rapid isolation and enhanced tumor-targeting of cell-derived microvesicles. ACS Nano, 11(1), 277–290.

    Article  Google Scholar 

  30. Petite, H., Duval, J.-L., Frei, V., Abdul-Malak, N., Sigot-Luizard, M.-F., & Herbage, D. (1995). Cytocompatibility of calf pericardium treated by glutaraldehyde and by the acyl azide methods in an organotypic culture model. Biomaterials, 16(13), 1003–1008.

    Article  Google Scholar 

  31. Yilmaz, B., Pazarceviren, A. E., Tezcaner, A., & Evis, Z. (2020). Historical development of simulated body fluids used in biomedical applications: A review. Microchemical Journal, 155, 104713.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their heartfelt gratitude to Professor J. Ji, who has offered valuable suggestions in the academic studies. Moreover, the various instrumental analysis of the Analytical and Testing Center of Chongqing University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingou Ji or Shilei Hao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Guo, Y., Yang, X. et al. Nano Calcium-Deficient Hydroxyapatite/O-carboxymethyl Chitosan-CaCl2 Microspheres Loaded with Rhein for Bone Defect Repair. J Bionic Eng 19, 1087–1099 (2022). https://doi.org/10.1007/s42235-022-00179-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-022-00179-z

Keywords

Navigation