Skip to main content
Log in

Computational Design and Fabrication of a Bending-Active Structure Using Fiberglass: A Bioinspired Pavilion Mimicking Marine Microorganism Radiolaria

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Bio-inspired architectural designs are often superior for their aesthetics and structural performance. Mimicking forms and loading states of a biological structure is complex as it requires a delicate balance among geometry, material properties, and interacting forces. The goal of this work is to design a biomimetic, ultra-lightweight, bending-active structure utilizing an informed integral design approach, and thereby constructing a self-supporting cellular pavilion. A bioinspired pavilion has been designed and constructed based on the natural cellular organization observed in Radiolaria, a deep-sea microorganism. The cellularity was mimicked via Voronoi tessellation in the structure of the pavilion, whose structural performance was evaluated using finite element analysis. Accordingly, funicular structure design strategies were studied with a focus on cellular distributions and concentration responding to areas with high structural stress. The computer aided custom designed pavilion was constructed with engineered, in-house fabricated fiberglass composite materials. The bending-active lightweight structure was also validated through material performance inquiry, a partial full-scale cellular assembly, and the full-size pavilion construction. This work contributes to the design approach comprising a bending-active form-finding schematic strategy to construct the elastic bending-active structure physically and simulate computationally within the context of nature inspired innovative lightweight structure design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lienhard, J., Alpermann, H., Gengnagel, C., & Knippers, J. (2013). Active bending, a review on structures where bending is used as a self-formation process. International Journal of Space Structures, 28, 187–196. https://doi.org/10.1260/0266-3511.28.3-4.187

    Article  Google Scholar 

  2. Riccardo, L. M. (2017) Bending-active plates: strategies for the induction of curvature through the means of elastic bending of plate-based structures. Institut für Tragkonstruktionen und Konstruktives Entwerfen, Universität Stuttgart, Stuttgart, Germany. https://elib.uni-stuttgart.de/handle/11682/9406.

  3. Panetta, J., Konaković-Luković, M., Isvoranu, F., Bouleau, E., & Pauly, M. (2019). X-shells: a new class of deployable beam structures. ACM Transactions on Graphics, 38(4), 1–15. https://doi.org/10.1145/3306346.3323040

    Article  Google Scholar 

  4. Laccone, F., Malomo, L., Pietroni, N., Cignoni, P., & Schork, T. (2021). Integrated computational framework for the design and fabrication of bending-active structures made from flat sheet material. Structures, 34, 979–994. https://doi.org/10.1016/j.istruc.2021.08.004

    Article  Google Scholar 

  5. Knippers, J., Cremers, J., Gabler, M., & Lienhard, J. (2012). Construction manual for polymers+ membranes: materials, semi-finished products, form finding, design. Birkhäuser GmbH, Munich, Germany

  6. Lienhard, J. (2014). Bending-active structures: form-finding strategies using elastic deformation in static and kinetic systems and the structural potentials therein. Institut für Tragkonstruktionen und Konstruktives Entwerfen, Universität Stuttgart, Stuttgart, Germany. https://doi.org/10.18419/opus-107

  7. Iwamoto, L. (2013). Digital Fabrications: Architectural and Material Techniques. Princeton Architectural Press.

    Google Scholar 

  8. Schleicher, S. (2018). Potential of 3D printed joinery for bending-active structures. Proceedings of IASS Annual Symposia, IASS 2018 Boston Symposium: Construction-aware Structural Design, Boston, USA, 1–6.

  9. Schleicher, S., Rastetter, A., Riccardo, L. M., Schönbrunner, A., Haberbosch, N., & Knippers, J. (2015). Form-finding and design potentials of bending-active plate structures. In M. R. Thomsen, M. Tamke, C. Gengnagel, B. Faircloth, & F. Scheurer (Eds.), Modelling Behaviour: Design Modelling Symposium (pp. 53–63). Springer.

    Chapter  Google Scholar 

  10. Riccardo, L. M., Schleicher, S., & Knippers, J. (2016). Bending-active plates: form and structure. Advances in architectural geometry (pp. 170–187), vdf Hochschulverlag AG, Zurich, Switzerland.

  11. Schleicher, S., & Riccardo, L. M. (2016). Bending-active plates: form-finding and form-conversion. https://ced.berkeley.edu/research/faculty-projects/bending-active-plates-form-finding-and-form-conversion.

  12. Laccone, F., Malomo, L., Pérez, J., Pietroni, N., Ponchio, F., Bickel, B., & Cignoni, P. (2020). A bending-active twisted-arch plywood structure: Computational design and fabrication of the FlexMaps Pavilion. SN Applied Sciences, 2(9), 1–9. https://doi.org/10.1007/s42452-020-03305-w

    Article  Google Scholar 

  13. Riccrdo, L. M., & Knippers, J. (2017). On the behaviour of bending-active plate structures. Proceedings of the IASS Annual Symposium 2017 “Interfaces: architecture, engineering, science, 2017 Hamburg, Germany, 1–9.

  14. Riccardo, L. M., Fragkia, V., Längst, P., Lienhard, J., Noël, R., Šinke Baranovskaya, Y., Tamke, M., & Ramsgaard Thomsen, M. (2018). Isoropia: An encompassing approach for the design, analysis and form-finding of bending-active textile hybrids. Proceedings of IASS Annual Symposia, IASS 2018 Boston Symposium: Construction-aware Structural Design, Boston, USA, 1–8.

  15. Brancart, S., Popovic L. O., De Laet, L., & De Temmerman, N. (2018). Bending-active reciprocal structures: geometric parameters and their stiffening effect. Proceedings of IASS Annual Symposia, IASS 2018 Boston Symposium: Construction-aware Structural Design, Boston, USA, 1–8.

  16. Sonntag, D., Bechert, S., & Knippers, J. (2017). Biomimetic timber shells made of bending-active segments. International Journal of Space Structures, 32, 149–159.

    Article  Google Scholar 

  17. Gengnagel, C., Hernández, E. L., & Bäumer, R. (2013). Natural-fibre-reinforced plastics in actively bent structures. Proceedings of the Institution of Civil Engineers - Construction Materials, 166(6), 365–377.

    Article  Google Scholar 

  18. Bletzinger, K.-U., Firl, M., Linhard, J., & Wüchner, R. (2010). Optimal shapes of mechanically motivated surfaces. Computer Methods in Applied Mechanics and Engineering, 199, 324–333.

    Article  Google Scholar 

  19. Adriaenssens, S., Block, P., Veenendaal, D., & Williams, C. (2014). Shell structures for architecture: Form finding and optimization. Routledge.

    Book  Google Scholar 

  20. Harikumar, A., Bovolo, F., & Bruzzone, L. (2017). An internal crown geometric model for conifer species classification with high-density lidar data. IEEE Transactions on Geoscience and Remote Sensing, 55(5), 2924–2940. https://doi.org/10.1109/TGRS.2017.2656152

    Article  Google Scholar 

  21. Larson, A. J., Cansler, C. A., Cowdery, S. G., Hiebert, S., Furniss, T. J., Swanson, M. E., & Lutz, J. A. (2016). Post-fire morel (Morchella) mushroom abundance, spatial structure, and harvest sustainability. Forest Ecology and Management, 377, 6–25.

    Article  Google Scholar 

  22. Anderson, O. R. (2012). Radiolaria. Springer. https://doi.org/10.1007/978-1-4612-5536-9

    Book  Google Scholar 

  23. Hollis, C. J. (1993). Latest cretaceous to late Paleocene radiolarian biostratigraphy: A new zonation from the New Zealand region. Marine Micropaleontology, 21(4), 295–327. https://doi.org/10.1007/s42452-020-03305-w

    Article  Google Scholar 

  24. Morphocode. (2009). Radiolaria: microworld’s architecture. https://morphocode.com/radiolaria-microworld-architecture/

  25. Liu, B., Faisal, T., Saft, C. L., Heath, J., Jaber, S. A., Dang, Q., Reaux, C., Welty, O., & Nguyen, S. (2019). Lightweight cellular structure: A formless fiberglass buildup utilize bending-active. Proceedings of the IASS Annual Symposium 2019 – Structural Membranes 2019 Form and Force, Barcelona, Spain, 1–5.

  26. Duthie, L. (2014). Radiolaria shell structure. https://blogs.ubc.ca/bionictimber/2014/03/01/radiolaria-shell-structure/

  27. Chiu, S. (1995). Aboav-Weaire’s and Lewis’ laws—A review. Materials characterization, 34(2), 149–165. https://doi.org/10.1016/1044-5803(94)00081-U

    Article  Google Scholar 

  28. Lewis, F. T. (1931). A comparison between the mosaic of polygons in a film of artificial emulsion and the pattern of simple epithelium in surface view (cucumber epidermis and human amnion). The Anatomical Record, 50(3), 235–265.

    Article  Google Scholar 

  29. Faisal, T. R., Hristozov, N., Rey, A. D., Western, T. L., & Pasini, D. (2012). Experimental determination of Philodendron melinonii and Arabidopsis thaliana tissue microstructure and geometric modeling via finite-edge centroidal Voronoi tessellation. Physical Review E, 86(3), 031921. https://doi.org/10.1103/PhysRevE.86.031921

    Article  Google Scholar 

  30. Radiolaria: Biology. https://doi.org/10.1007/s42452-020-03305-w.

  31. Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2009). Spatial tessellations: Concepts and applications of Voronoi diagrams. John Wiley & Sons.

    MATH  Google Scholar 

  32. Blackman, J., & Mulheran, P. (1996). Scaling behavior in submonolayer film growth: A one-dimensional model. Physical Review B, 54(16), 11681. https://doi.org/10.1103/PhysRevB.54.11681

    Article  Google Scholar 

  33. Faisal, T. R., Hristozov, N., Western, T. L., Rey, A. D., & Pasini, D. (2014). Computational study of the elastic properties of Rheum rhabarbarum tissues via surrogate models of tissue geometry. Journal of Structural Biology, 185(3), 285–294. https://doi.org/10.1016/j.jsb.2014.01.012

    Article  Google Scholar 

  34. González, D. L., Pimpinelli, A., & Einstein, T. (2011). Spacing distribution functions for the one-dimensional point-island model with irreversible attachment. Physical Review E, 84(1), 011601. https://doi.org/10.1103/PhysRevE.84.011601

    Article  Google Scholar 

  35. Clifford, B., & McGee, W. (2013). Range: Matter Design. Matter Design Press.

    Google Scholar 

  36. Zhao, B., Chen, W., Hu, J., Chen, J., Qiu, Z., Zhou, J., & Gao, C. (2016). Mechanical properties of ETFE foils in form-developing of inflated cushion through flat-patterning. Construction and Building Materials, 111, 580–589.

    Article  Google Scholar 

  37. Angelucci, G., & Mollaioli, F. (2018). Voronoi-like grid systems for tall buildings. Frontiers in Built Environment. https://doi.org/10.1007/s42452-020-03305-w

    Article  Google Scholar 

  38. Su, Y., Wu, Y., Ji, W., & Sun, X. (2021). Computational morphogenesis of free-form grid structures with Voronoi diagram. Computer-Aided Civil and Infrastructure Engineering, 36(3), 318–330. https://doi.org/10.1111/mice.12621

    Article  Google Scholar 

  39. Froli, M., & Laccone, F. (2017). Experimental static and dynamic tests on a large-scale free-form Voronoi grid shell mock-up in comparison with finite-element method results. International Journal of Advanced Structural Engineering, 9(3), 293–308. https://doi.org/10.1007/s40091-017-0166-9

    Article  Google Scholar 

  40. Pietroni, N., Tonelli, D., Puppo, E., Froli, M., Scopigno, R., & Cignoni, P. (2015). Statics aware grid shells. Computer Graphics Forum, 34(2), 627–641. https://doi.org/10.1111/cgf.12590

    Article  Google Scholar 

  41. ASTM D3039 (2017), Standard test method for tensile properties of polymer matrix composite materials, ASTM International.

Download references

Acknowledgements

The authors would like to thank the team of students who worked on this project: Quoc Dang, Jesse Heath, Sami Jaber, Son Nguyen, Catherine Reaux, Olivia Welty, and Professor Corey Saft, as well as the support of Dr. Charles Taylor, Dr. Jacob King and Yasmeen Qudsi on waterjet cutting. The authors acknowledge the support provided by the University of Louisiana at Lafayette, the College of the Arts, and by MAO.JIN.DAO Design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvir R. Faisal.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Faisal, T.R. Computational Design and Fabrication of a Bending-Active Structure Using Fiberglass: A Bioinspired Pavilion Mimicking Marine Microorganism Radiolaria. J Bionic Eng 19, 471–482 (2022). https://doi.org/10.1007/s42235-021-00150-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00150-4

Keywords

Navigation