Skip to main content
Log in

Synthesis and Antibacterial Properties of ZIF-8/Ag-Modified Titanium Alloy

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The loosening of implant due to bacterial infection brings great difficulties to the implantation of bionic titanium devices. In this study, the Zeolitic Imidazolate Framework 8 (ZIF-8) and silver ions were added to the surface of titanium alloy to obtain a uniform coating, which has nice biological activity and antibacterial property. The material structure characterizations, such as X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), proved that titanium is successfully modified with ZIF-8 and silver ions. It has micro- and nano-level characteristics, rough porous morphology, and excellent apatite inducing ability. The water contact angle experiment shows that the addition of ZIF-8 greatly increases the hydrophilicity of material, which provides conditions for the attachment of osteoblasts. The polarization curve obtained from the electrochemical test proves that the addition of ZIF-8 coating improves the corrosion resistance of titanium. The release of silver ion has a strong growth inhibitory effect on E. coli, and exhibits excellent antibacterial properties. Therefore, the preparation of ZIF-8/Ag coatings on 3D printed titanium provides a new option for the development of orthopedic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Frosch, S., Nusse, V., Frosch, K. H., Lehmann, W., & Buchhorn, G. (2021). Osseointegration of 3D porous and solid Ti-6Al-4V implants—narrow gap push-out testing and experimental setup considerations. Journal of the Mechanical Behavior of Biomedical Materials, 115, 104282.

    Article  Google Scholar 

  2. Pattanayak, D. K., Fukuda, A., Matsushita, T., Takemoto, M., Fujibayashi, S., Sasaki, K., Nishida, N., Nakamura, T., & Kokubo, T. (2011). Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomaterials, 7, 1398–1406.

    Article  Google Scholar 

  3. Xiu, P., Jia, Z. J., Lv, J., Yin, C., Cheng, Y., Zhang, K., Song, C. L., Leng, H. J., Zheng, Y. F., Cai, H., & Liu, Z. J. (2016). Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Applied Materials & Interfaces, 8, 17964–17975.

    Article  Google Scholar 

  4. Ye, M. F., Liu, W. J., Yan, L. H., Cheng, S. L., Li, X. X., & Qiao, S. C. (2021). 3D printed Ti6Al4V scaffolds combined with pulse electromagnetic fields enhance osseointegration in osteoporosis. Molecular Medicine Reports, 23, 410.

    Article  Google Scholar 

  5. Shan, L. J., Kadhum, A. A. H., Al-Furjan, M. S. H., Weng, W. J., Gong, Y. P., Cheng, K., Zhou, M. Y., Dong, L. Q., Chen, G. J., Takriff, M. S., & Sulong, A. B. (2019). In-situ controlled surface microstructure of 3D printed ti alloy to promote its osteointegration. Materials, 12, 815.

    Article  Google Scholar 

  6. Xie, X. Z., Mao, C. Y., Liu, X. M., Zhang, Y. Z., Cui, Z. D., Yang, X. J., Yeung, K. W. K., Pan, H. B., Chu, P., & Wu, S. L. (2017). Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/ag/collagen coating. ACS Applied Materials & Interfaces, 9, 26417–26428.

    Article  Google Scholar 

  7. Xie, X. Z., Mao, C. Y., Liu, X. M., Tan, L., Cui, Z. D., Yang, X. J., Zhu, S. L., Li, Z. Y., Yuan, X. B., Zheng, Y. F., Yeung, K. W. K., Chu, P., & Wu, S. L. (2018). Tuning the bandgap of photo-sensitive polydopamine/Ag3PO4/graphene oxide coating for rapid, noninvasive disinfection of implants. ACS Central Science, 4, 724–738.

    Article  Google Scholar 

  8. Zhou, Z. J., Shen, Z. Y., & Chen, X. Y. (2020). Tale of two magnets: An advanced magnetic targeting system. ACS Nano, 14, 7–11.

    Article  Google Scholar 

  9. Andrukhov, O., Huber, R., Shi, B., Berner, S., Rausch-Fan, X., Moritz, A., Spencer, N. D., & Schedle, A. (2016). Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dental Materials, 32, 1374–1384.

    Article  Google Scholar 

  10. Kotzabasaki, M., & Froudakis, G. E. (2018). Review of computer simulations on anti-cancer drug delivery in MOFs. Inorganic Chemistry Frontiers, 5, 1255–1272.

    Article  Google Scholar 

  11. Rivera-Torrente, M., Mandemaker, L. D. B., Filez, M., Delen, G., Seoane, B., Meirer, F., & Weckhuysen, B. M. (2020). Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chemical Society Reviews, 49, 6694–6732.

    Article  Google Scholar 

  12. Miralda, C. M., Macias, E. E., Zhu, M. Q., Ratnasamy, P., & Carreon, M. A. (2011). Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate. ACS Catalysis, 2, 180–183.

    Article  Google Scholar 

  13. Kholdeeva, O., & Maksimchuk, N. (2021). Metal-organic frameworks in oxidation catalysis with hydrogen peroxide. Catalysts, 11, 283.

    Article  Google Scholar 

  14. Hossain, M. I., & Glover, T. G. (2019). Kinetics of water adsorption in UiO-66 MOF. Industrial & Engineering Chemistry Research, 58, 10550–10558.

    Article  Google Scholar 

  15. Vaitsis, C., Sourkouni, G., & Argirusis, C. (2019). Metal organic frameworks (MOFs) and ultrasound: A review. Ultrasonics Sonochemistry, 52, 106–119.

    Article  Google Scholar 

  16. Kumar, P., Bansal, V., Paul, A. K., Bharadwaj, L. M., Deep, A., & Kim, K.-H. (2015). Biological applications of zinc imidazole framework through protein encapsulation. Applied Nanoscience, 6, 951–957.

    Article  Google Scholar 

  17. Hoop, M., Walde, C. F., Riccò, R., Mushtaq, F., Terzopoulou, A., Chen, X. Z., deMello, A. J., Doonan, C. J., Falcaro, P., Nelson, B. J., Puigmartí-Luis, J., & Pané, S. (2018). Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today, 11, 13–21.

    Article  Google Scholar 

  18. Ravinayagam, V., & Rehman, S. (2020). Zeolitic imidazolate framework-8 (ZIF-8) doped TiZSM-5 and mesoporous carbon for antibacterial characterization. Saudi Journal of Biological Sciences, 27, 1726–1736.

    Article  Google Scholar 

  19. Zhang, X., Chen, J. Y., Pei, X., Wang, J., Wan, Q. B., Jiang, S. K., Huang, C., & Pei, X. B. (2017). Enhanced osseointegration of porous titanium modified with zeolitic imidazolate framework-8. ACS Applied Materials & Interfaces, 9, 25171–25183.

    Article  Google Scholar 

  20. Zheng, Q. Y., Liu, X. M., Zheng, Y. F., Yeung, K. W. K., Cui, Z. D., Liang, Y. Q., Li, Z. Y., Zhu, S. L., Wang, X. B., & Wu, S. L. (2021). The recent progress on metal–organic frameworks for phototherapy. Chemical Society Reviews, 50, 5086–5125.

    Article  Google Scholar 

  21. Ren, Y. W., Liu, H. P., Liu, X. M., Zheng, Y. F., Li, Z. Y., Li, C. Y., Yeung, K. W. K., Zhu, S. L., Liang, Y. Q., Cui, Z. D., & Wu, S. L. (2020). Photoresponsive materials for antibacterial applications. Cell Reports Physical Science, 1, 100245.

    Article  Google Scholar 

  22. Kong, X. Y., Liu, X. M., Zheng, Y. F., Chu, P., Zhang, Y., & Wu, S. L. (2021). Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Materials Science and Engineering: R: Reports, 145, 100610.

    Article  Google Scholar 

  23. Wan, X. P., Chen, J. L., Cheng, C., Zhang, H. B., Zhao, S. J., Li, J. L., Lv, X. B., Wang, Z. Z., & Gao, R. (2018). Improved expression of recombinant fusion defensin geneplasmids packed with chitosan-derived nanoparticles and effect on antibacteria and mouse immunity. Experimental and Therapeutic Medicine, 16, 3965–3972.

    Google Scholar 

  24. Wei, S. B., Qiao, Y. Q., Wu, Z. C., Liu, X. M., Li, Y., Cui, Z. D., Li, C. Y., Zheng, Y. F., Liang, Y. Q., Li, Z. Y., Zhu, S. L., Wang, H. R., Wang, X. B., Che, R. C., & Wu, S. L. (2021). Na+ inserted metal–organic framework for rapid therapy of bacteria-infected osteomyelitis through microwave strengthened Fenton reaction and thermal effects. Nano Today, 37, 101090.

    Article  Google Scholar 

  25. Han, D. L., Han, Y. J., Li, J., Liu, X. M., Yeung, K. W. K., Zheng, Y. F., Cui, Z. D., Yang, X. J., Liang, Y. Q., Li, Z. Y., Zhu, S. L., Yuan, X. B., Feng, X. B., Yang, C., & Wu, S. L. (2020). Enhanced photocatalytic activity and photothermal effects of Cu-doped metal–organic frameworks for rapid treatment of bacteria-infected wounds. Applied Catalysis B: Environmental, 261, 118248.

    Article  Google Scholar 

  26. Li, J., Liu, X. M., Tan, L., Cui, Z. D., Yang, X. J., Liang, Y. Q., Li, Z. Y., Zhu, S. L., Zheng, Y. F., Yeung, K. W. K., Wang, X. B., & Wu, S. L. (2019). Zinc-doped Prussian blue enhances photothermal clearance of Staphylococcus aureus and promotes tissue repair in infected wounds. Nature Communication, 10, 4490.

    Article  Google Scholar 

  27. Cui, J. W., Wu, D. P., Li, Z. Y., Zhao, G. A., Wang, J. S., Wang, L., & Niu, B. X. (2021). Mesoporous Ag/ZnO hybrid cages derived from ZIF-8 for enhanced photocatalytic and antibacterial activities. Ceramics International, 47, 15759–15770.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51627805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wei, Y., Ma, B. et al. Synthesis and Antibacterial Properties of ZIF-8/Ag-Modified Titanium Alloy. J Bionic Eng 19, 507–515 (2022). https://doi.org/10.1007/s42235-021-00135-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-021-00135-3

Keywords

Navigation