Skip to main content
Log in

Output Second-order Sliding-mode Control for a Gecko Biomimetic Climbing Robot

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

The aim of this study is to propose the output controller to solve the execution of the gait sequence for Gecko Bio-inspired Robotic Devices (GBRDs). The Twisting Controller (TC) serves as basis of the tracking trajectory designed algorithm. The TC uses both the tracking error and its estimated derivative, which is calculated by a set of distributed Super-Twisting Algorithms (STAs). Each STA is implemented as a robust and exact differentiator. The output-based controller structure corresponds to a sort of decentralized form for robotic devices. Consequently, each articulation is controlled by an independent TC. A set of proposed references trajectories reproduce the gait cycle of a Real Gecko-Lizard (RG-L). The reference trajectories are proposed as the superposition of sigmoid functions ful-filling the conditions of the Bezzier polynomials. Numerical simulations evaluate the GBRD movement enforced by the suggested controller in the horizontal as well as the vertical gaits. An own 3D printed GBRD is the experimental platform aimed to test the distributed controller. Two controlled vacuum pumps are used to adhere the GBRD to the wall surfaces. A set of experimental validations confirm the robustness and the reliability of the proposed controller when its performance is compared with classical output feedback controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choi H R, Ryew S M, Kang T H, Lee J H, Kim H M. A wall climbing robot with closed link mechanism. Proceedings of the Intelligent Robotic Systems Conference, Takamtzu, Japan, 2000, 3, 2006–2011.

    Google Scholar 

  2. Nagakubo A, Hirose S. Walking and running of the quadruped wall-climbing robot. Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, USA, 1994, 1005–1012.

  3. Spenko M J, Haynes G C, Saunders J A, Cutkosky M R, Rizzi A A, Full R J, Koditschek D E. Biologically inspired climbing with a hexapedal robot. Journal of Field Robot, 2008, 25, 223–242.

    Article  Google Scholar 

  4. Liu J L, Tong Z Q, Fu J Y, Wang D H, Su Q, Zou J. A gecko inspired fluid driven climbing robot. IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, 783–788.

  5. Unver O, Uneri A, Aydemir A, Sitti M. Geckobot: A gecko inspired climbing robot using elastomer adhesives. IEEE International Conference on Robotics and Automation, Orlando, USA, 2006, 2329–2335.

  6. Kim S, Spenko M, Trujillo S, Heyneman B, Mattoli V, Cutkosky M R. Whole body adhesion: Hierarchical, directional and distributed control of adhesive forces for a climbing robot. IEEE International Conference on Robotics and Automation, Roma, Italy, 2007, 1268–1273.

  7. Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky M R. Smooth vertical surface climbing with directional adhesion. IEEE Transactions on Robotics, 2008, 24, 65–74.

    Article  Google Scholar 

  8. Hawkes E W, Eason E V, Asbeck A T, Cutkosky M R. The gecko’s toe: Scaling directional adhesives for climbing applications. IEEE/ASME Transactions on Mechatronics, 2013, 18, 518–526.

    Article  Google Scholar 

  9. Santos D, Heyneman B, Kim S, Esparza N, Cutkosky M R. Gecko-inspired climbing behaviors on vertical and overhanging surfaces. IEEE International Conference on Robotics and Automation, Pasadena, USA, 2008, 1125–1131.

  10. Hawkes E W, Ulmen J, Esparza N, Cutkosky M R. Scaling walls: Applying dry adhesives to the real world. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, 2011, 5100–5106.

  11. Okada N, Yamanaka K, Kondo E. A wall climbing robot with simple suckers. ICCAS-SICE International Joint Conference, Fukuoka, Japan, 2009.

  12. Fukuda T, Arai F, Matsuura H, Nishibori K. Wall surface mobile robot having multiple suckers on variable structural crawler. International Symposium on Theory of Machines and Mechanisms, 1992, 707–712.

  13. Meng C, Wang T M, Guan S G, Zhang L, Wang J, Li X H. Design and analysis of gecko-like robot. Chinese Journal of Mechanical Engineering-English Edition, 2011, 24, 224.

    Article  Google Scholar 

  14. Yu Z W, Wang Z Y, Liu R, Wang P, Dai Z D. Stable gait planning for a gecko-inspired robot to climb on vertical surface. IEEE International Conference on Mechatronics and Automation, Takamatzu, Japan, 2013, 307–311.

  15. Hu C Y, Mei T, Sun S M, Liu Y W, Wu X, Zhang Y J. CPG-based control system for foot locomotion of gecko-inspired robot. International Conference on Measuring Technology and Mechatronics Automation, Hong Kong, China, 2013, 409–414.

  16. Chung-Hsien K, Hung-Chyun C, Sheng-Yu T. Pneumatic sensor: A complete coverage improvement approach for robotic cleaners. IEEE Transactions on Instrumentation and Measurement, 2011, 60, 1237–1256.

    Article  Google Scholar 

  17. Son D, Jeon D, Nam W C, Chang T, Seo D, Kim J. Gait planning based on kinematics for a quadruped gecko model with redundancy. Robotics and Autonomous Systems, 2010, 58, 648–656.

    Article  Google Scholar 

  18. Huang C Q, Xie L F, Liu Y L. Pd plus error-dependent integral nonlinear controllers for robot manipulators with an uncertain jacobian matrix. ISA Transactions, 2012, 51, 792–800.

    Article  Google Scholar 

  19. Vasu N, Srinivasulu G. Comparative study of fuzzy PD controller and conventional controllers. International Conference on Intelligent Agent & Multi-Agent Systems, Chennai, India, 2009, 1–2.

  20. Davila J, Fridman L, Levant A. Second-order sliding-mode observer for mechanical systems. IEEE Transactions on Automatic Control, 2005, 50, 1785–1789.

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang Y N. A time-specified nonsingular terminal sliding mode control approach for trajectory tracking of robotic airships. Nonlinear Dynamics, 2018, 92, 1359–1367.

    Article  Google Scholar 

  22. Yang Y N, Yan Y. Neural network approximation-based nonsingular terminal sliding mode control for trajectory tracking of robotic airships. Aerospace Science and Technology, 2016, 54, 192–197.

    Article  Google Scholar 

  23. Levant A. Sliding order and sliding accuracy in sliding mode control. International Journal of Control, 1993, 58, 1247–1263.

    Article  MathSciNet  MATH  Google Scholar 

  24. Moreno J. A Lyapunov approach to output feedback control using second-order sliding modes. IMA Journal of Mathematical Control and Information, 2012, 29, 291–308.

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang Y P, Du W G, Zhu L J. Differences in body size and female reproductive traits between two sympatric geckos, gekko japonicus and gekko hokouensis. Folia Zoologica, 2009, 58, 113.

    Google Scholar 

  26. Cruz-Ortiz D, Luviano-Juarez A, Chairez I. Output sliding mode controller to regulate the gait of gecko-inspired robot. XVI Congreso Latinoamericano de Control Automatico, Cancún, Mexico, 2014.

  27. Dai Z D, Li H K. A biomimetic study of discontinuous-constraint metamorphic mechanism for gecko-like robot. Biomimetics Learning from Nature, 2010, 257–271.

  28. Russell A P. A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). Journal of Zoology, 1975, 176, 437–476.

    Article  Google Scholar 

  29. Bajo A, Simaan N. Kinematics-based detection and localization of contacts along multisegment continuum robots. IEEE Transactions on Robotics, 2012, 28, 291–302.

    Article  Google Scholar 

  30. Kalouche S, Wiltsie N, Su H J, Parness A. Inchworm style gecko adhesive climbing robot. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Chicago, IL, USA, 2014, 2319–2324.

  31. Poznyak A. Advanced Mathematical Tools for Automatic Control Engineers: Deterministic Systems. Elsevier, Amsterdam, Netherlands 2007, 808.

    MATH  Google Scholar 

  32. Khalil H K, Praly L. High-gain observers in nonlinear feedback control. International Journal of Robust and Nonlinear Control, 2014, 24, 993–1015.

    Article  MathSciNet  MATH  Google Scholar 

  33. Khalil H. Adaptive output feedback control of nonlinear systems represented by input-output models. IEEE Transactions on Automatic Control, 1996, 41, 177–188.

    Article  MathSciNet  MATH  Google Scholar 

  34. Dai Z D, Sun J R. A biomimetic study of discontinuous-constraint metamorphic mechanism for gecko-like robot. Journal of Bionic Engineering, 2007, 4, 91–95.

    Article  Google Scholar 

  35. Hashemi E, Jadidi M G, Mohammadi M S, Karimi M. In-plane path planning for biped robots based on Bezier curve. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary, 2011, 796–801.

  36. Jiao J, Cao Z Q, Zhao P, Liu X L, Tan M. Bezier curve-based path planning for a mobile manipulator in unknown environments. IEEE International Conference on Robotics and Biomimetics, Shenzhen, China, 2013, 1864–1868.

  37. Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 1989, 2, 303–314.

    Article  MathSciNet  MATH  Google Scholar 

  38. Gao Z Q. Active disturbance rejection control: A paradigm shift in feedback control system design. Proceedings of the American Control Conference, Minneapolis, USA, 2006, 2399–2405.

  39. Polyakov A, Chairez I. A new homogeneous quasi-continuous second order sliding mode control. XVI Congreso Latinoamericano de Control Automatico, Canún, Mexico, 2014.

  40. Gonzalez T, Moreno J, Fridman L. Variable gain Super-Twisting sliding mode control. IEEE Transactions on Automatic Control, 2012, 57, 2100–2105.

    Article  MathSciNet  MATH  Google Scholar 

  41. Levant A. Robust exact differentiation via sliding mode technique. Automatica, 1998, 34, 379–384.

    Article  MathSciNet  MATH  Google Scholar 

  42. Castillo I, Fridman L, Moreno J. Super-twisting algorithm in presence of time and state dependent perturbations. International Journal of Control, 2018, 91, 2535–2548.

    Article  MathSciNet  MATH  Google Scholar 

  43. Seeber R, Horn M, Fridman L. A novel method to estimate the reaching time of the super-twisting algorithm. IEEE Transactions on Automatic Control, 2018, 63, 4301–4308.

    Article  MathSciNet  MATH  Google Scholar 

  44. Chalanga A, Kamal S, Fridman L, Bandyopadhyay B, Moreno J. Implementation of super-twisting control: Super-twisting and higher order sliding-mode observer-based approaches. IEEE Transactions on Industrial Electronics, 2016, 63, 3677–3685.

    Article  Google Scholar 

  45. Yang Y, Yan Y. Attitude regulation for unmanned quadrotors using adaptive fuzzy gain-scheduling sliding mode control. Aerospace Science and Technology, 2016, 54, 208–217.

    Article  Google Scholar 

  46. Yang Y N, Ye Y. Backstepping sliding mode control for uncertain strict feedback nonlinear systems using neural network-based adaptive gain scheduling. Journal of Systems Engineering and Electronics, 2018, 29, 580–586.

    Article  Google Scholar 

  47. Rahmani M, Komijani H, Ghanbari A, Ettefagh M M. Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm. Microsystem Technologies, 2018, 24, 2835–2846.

    Article  Google Scholar 

  48. Rahmani M. Control of a caterpillar robot manipulator using hybrid control. Microsystem Technologies, 2019, 25, 2041–2854.

    Article  Google Scholar 

  49. Utkin V I, Poznyak A. Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. Automatica, 2013, 49, 39–47.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Chairez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Ortiz, D., Ballesteros-Escamilla, M., Chairez, I. et al. Output Second-order Sliding-mode Control for a Gecko Biomimetic Climbing Robot. J Bionic Eng 16, 633–646 (2019). https://doi.org/10.1007/s42235-019-0051-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0051-2

Keywords

Navigation