Skip to main content
Log in

Modification of Oil Palm Empty Fruit Bunch and Sugarcane Bagasse Biomass as Potential Reinforcement for Composites Panel and Thermal Insulation Materials

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

This paper focuses on the study of the effect of modification of Oil Palm Empty Fruit Bunch (OPEFB) and sugarcane bagasse (SCB) biomass as potential reinforcement for composites panel and thermal insulation. Both fibres were treated with three types of chemicals: 2% silane, 4% H2O2 and 4% H2O2-2% silane for 3 h. The influence of modified fibres content in composites was examined by structural changes using image analyser, Fourier transform infrared (FTIR), Scanning Electron Microscopy (SEM), tensile, interfacial shear strength (IFSS) and thermal characteristic. The diameter of both fibres was reduced after treatment and showed decreasing of lignin and hemicellulose in fibre. Tensile strength has been increased by 2% silane treatment for both fibres and 4% H2O2 treatment displays higher result for IFSS. Thermal properties of treated SCB fibre with silane display higher residual content and better thermal stability. SEM characterization showed that 2% silane treatment removed silica bodies of OPEFB fibre while 4% H2O2 treatment uniformly filled porosity of SCB fibre. Finally, results revealed that treated OPEFB fibre is enough to improve compatibility and mechanical properties, while treated SCB fibre was effective in thermal stability for fabrication of composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X, Tabil L G, Panigrahi S, Crerar W J. The influence of fiber content on properties of injection molded flax fiber- HDPE biocomposites. ASAE Annual Meeting, American Society of Agricultural and Biological Engineers, St. Joseph, Michigan, USA, 2006.

    Google Scholar 

  2. Panyasart, K, Chaiyut N, Amornsakchai T, Santawitee O. Effect of surface treatment on the properties of pineapple leaf fibers reinforced polyamide 6 composites. Energy procedia, 2014, 56, 406–413.

    Article  Google Scholar 

  3. Siyamak S, Ibrahim N A, Abdolmohammadi S, Yunus W M, Rahman M Z. Effect of fiber esterification on fundamental properties of oil palm empty fruit bunch fiber/poly (butylene adipate-co-terephthalate) biocomposites. International Journal of Molecular Sciences, 2012, 2, 1327–1346.

    Article  Google Scholar 

  4. Danso H. Properties of coconut, oil palm and bagasse fibres: As potential building materials. Procedia Engineering, 2017, 200, 1–9.

    Article  Google Scholar 

  5. Norsuraya S, Fazlena H, Norhasyimi R. Sugarcane bagasse as a renewable Source of silica to synthesize Santa Barbara Amorphous-15 (SBA-15). Procedia Engineering, 2016, 148, 839–846.

    Article  Google Scholar 

  6. Vargas Betancur G J, Pereira Jr N. Sugar cane bagasse as feedstock for second generation ethanol production: Part I: Diluted acid pretreatment optimization. Electronic Journal of Biotechnology, 2010, 3, 10–11.

    Google Scholar 

  7. Onésippe C, Passe-Coutrin N, Toro F, Delvasto S, Bilba K, Arsène M A. Sugar cane bagasse fibres reinforced cement composites: Thermal considerations. Composites Part A: Applied Science and Manufacturing, 2010, 4, 549–556.

    Article  Google Scholar 

  8. Jayamani E. Hamdan S, Rahman M R, Bakri M K. Investigation of fiber surface treatment on mechanical, acoustical and thermal properties of betelnut fiber polyester composites. Procedia Engineering, 2014, 97, 545–554.

    Google Scholar 

  9. Motaung T E, Mochane M J. Systematic review on recent studies on sugar cane bagasse and bagasse cellulose polymer composites. Journal of Thermoplastic Composite Materials, 2018, 10, 1416–1432.

    Article  Google Scholar 

  10. Rachini A, Le Troedec M, Peyratout C, Smith A. Comparison of the thermal degradation of natural, alkali-treated and silane-treated hemp fibers under air and an inert atmosphere. Journal of Applied Polymer Science, 2009, 112, 226–234.

    Article  Google Scholar 

  11. Wong K J, Yousif B F, Low K O. The effects of alkali treatment on the interfacial adhesion of bamboo fibres. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2010, 224, 139–148.

    Article  Google Scholar 

  12. Faizi M K, Shahriman A B, Majid M S A, Ahmad Z A, Shamsul B M T, Ng Y G. The effect of alkaline treatments soaking time on oil palm empty fruit bunch (OPEFB) fibre structure. Journal of Physics Conference Series, 2017, 908, UNSP 012033.

  13. Fatra W, Sanjaya R, Zulfansyah Z, Rionaldo H, Helwani Z. Alkaline treatment of oil palm frond fibers by using extract of oil palm EFB ash for better adhesion toward polymeric matrix. Journal of Engineering and Technological Sciences, 2015, 47, 498–507.

    Article  Google Scholar 

  14. Fatra W, Rouhillahi H, Helwani Z, Zulfansyah, Asmura J. Effect of alkaline treatment on the properties of oil palm empty fruit bunch fiber-reinforced polypropylene composite. International Journal of Technology, 2016, 7, 1026–1034.

    Article  Google Scholar 

  15. Jawaid M, Alothman O Y, Paridah M T, Khalil H S. Effect of oil palm and jute fiber treatment on mechanical performance of epoxy hybrid composites. International Journal of Polymer Analysis and Characterization, 2014, 19, 62–69.

    Article  Google Scholar 

  16. Anggono J, Sugondo S, Sewucipto S, Purwaningsih H, Henrico S. The use of sugarcane bagasse in PP matrix composites: A comparative study of bagasse treatment using calcium hydroxide and sodium hydroxide on composite strength. AIP Conference Proceedings, Solo, Indonesia, 2017, 1788, UNSP 030055.

  17. Acharya S K, Mishra P, Mehar S K. Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite. BioResources, 2011, 6, 3155–3165.

    Google Scholar 

  18. Mulinari D R, Cipriano J D, Capri M R, Brandão A T. Influence of surgarcane bagasse fibers with modified surface on polypropylene composites. Journal of Natural Fibers, 2018, 15, 174–82.

    Article  Google Scholar 

  19. La Rosa A D, Recca A, Gagliano A, Summerscales J, Latteri A, Cozzo G, Cicala G. Environmental impacts and thermal insulation performance of innovative composite solutions for building applications. Construction and Building Materials, 2014, 55, 406–414.

    Article  Google Scholar 

  20. Sair S, Oushabi A, Kammouni A, Tanane O, Abboud Y, Hassani F O, Laachachi A, El Bouari A. Effect of surface modification on morphological, mechanical and thermal conductivity of hemp fiber: Characterization of the interface of hemp–Polyurethane composite. Case Studies in Thermal Engineering, 2017, 10, 550–559.

    Article  Google Scholar 

  21. Agrawal R, Saxena N S, Sreekala M S, Thomas S. Effect of treatment on the thermal conductivity and thermal diffusivity of oil-palm-fiber-reinforced phenolformaldehyde composites. Journal of Polymer Science Part B: Polymer Physics, 2000, 38, 916–921.

    Article  Google Scholar 

  22. Asdrubali F, D'Alessandro F, Schiavoni S. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 2015, 4, 1–7.

    Article  Google Scholar 

  23. Manohar, K, Manohar K. Experimental investigation of building thermal insulation from agricultural by-products. British Journal of Applied Science & Technology, 2012, 2, 227–239.

    Article  Google Scholar 

  24. Binici H, Eken M, Dolaz M, Aksogan O, Kara M. An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Construction and Building Materials, 2014, 51, 24–33.

    Article  Google Scholar 

  25. Yarbrough D W, Wilkes K E, Olivier P A, Graves R S, Vohra A. Apparent thermal conductivity data and related information for rice hulls and crushed pecan shells. Thermal Conductivity, 2005, 27, 222–230.

    Google Scholar 

  26. Chikhi M, Agoudjil B, Boudenne A, Gherabli A. Experimental investigation of new biocomposite with low cost for thermal insulation. Energy and Buildings, 2013, 66, 267–273.

    Article  Google Scholar 

  27. Abril D, Medina M, Abril A. Sugar cane bagasse prehydrolysis using hot water. Brazilian Journal of Chemical Engineering, 2012, 29, 31–3.

    Article  Google Scholar 

  28. Asim M, Jawaid M, Abdan K, Nasir M. Effect of alkali treatments on physical and mechanical strength of pineapple leaf fibres. IOP Conference Series-Materials Science and Engineering, Kuala Lumpur, Malaysia, 2018, 290, UNSP 012030.

  29. Villain G, Thiery M, Platret G. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry. Cement and Concrete Research, 2007, 37, 1182–1192.

    Article  Google Scholar 

  30. Dai, Z, Zhang B, Shi F, Li M, Zhang Z, Gu Y. Effect of heat treatment on carbon fiber surface properties and fibers/epoxy interfacial adhesion. Applied Surface Science, 2011, 257, 8457–8461.

    Article  Google Scholar 

  31. Atiqah A, Jawaid M, Ishak M R, Sapuan S M. Effect of alkali and silane treatments on mechanical and interfacial bonding strength of sugar palm fibers with thermoplastic polyurethane. Journal of Natural Fibers, 2018, 15, 251–261.

    Article  Google Scholar 

  32. Razak N I, Ibrahim N A, Zainuddin N, Rayung M, Saad W Z. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly (lactic acid) composites. Molecules, 2014, 19, 2957–2968.

    Article  Google Scholar 

  33. Chen H Z. Chemical composition and structure of natural lignocellulose. Biotechnology of Lignocellulose, Springer, Dordrecht, Netherlands, 2014, 25–71.

  34. Hossain M K, Dewan M W, Hosur M, Jeelani S. Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Composites Part B: Engineering, 2011, 42, 1701–1707.

    Article  Google Scholar 

  35. Sreekala M S, Kumaran M G, Thomas S. Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 1997, 66, 821–835.

    Article  Google Scholar 

  36. Sawpan M A, Pickering K L, Fernyhough A. Effect of fibre treatments on interfacial shear strength of hemp fibre reinforced polylactide and unsaturated polyester composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 1189–1196.

    Article  Google Scholar 

  37. Rabelo S C, Fonseca N A, Andrade R R, Maciel Filho R, Costa A C. Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass and Bioenergy, 2011, 35, 2600–2607.

    Article  Google Scholar 

  38. Asim Asim M, Jawaid M, Abdan K, Ishak M R. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. Journal of Bionic Engineering, 2016, 13, 426–435.

    Article  Google Scholar 

  39. Pyun J H, Shin T B, Lee J H, Ahn K M, Kim T H, Cha H S. Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement. The Journal of Advanced Prosthodontics, 2016, 8, 94–100.

    Article  Google Scholar 

  40. Ishola M M, Millati R, Syamsiah S, Cahyanto M N, Niklasson C, Taherzadeh M J. Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment. Molecules, 2012, 17, 14995–15012.

    Article  Google Scholar 

  41. Mohd N H, Alim A, Aqila A, Zahari J I, Yarmo M A, Ahmad I, Tahari A, Najiha M, Kargarzadeh H, Othaman R. Properties of aminosilane modified nanocrytalline cellulose (NCC) from oil palm empty fruit bunch (OPEFB) fibers. Materials Science Forum, 2017, 888, 284–289.

    Article  Google Scholar 

  42. Faix O, Bremer J, Schmidt O, Tatjana S J. Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis—gas chromatography and Fourier-transform infrared spectroscopy. Journal of Analytical and Applied Pyrolysis, 1991, 21, 147–162.

    Article  Google Scholar 

  43. Fatriasari W, Syafii W, Wistara N J, Syamsu K, Prasetya B. The Characteristic changes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment. International Journal of Renewable Energy Development, 2014, 3, 133–143.

    Article  Google Scholar 

  44. Fackler K, Stevanic J S, Ters T, Hinterstoisser B, Schwanninger M, Salmén L. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme and Microbial Technology, 2010, 47, 257–267.

    Article  Google Scholar 

  45. Rayung M, Ibrahim N A, Zainuddin N, Saad W Z, Razak N I, Chieng B W. The effect of fiber bleaching treatment on the properties of poly (lactic acid)/oil palm empty fruit bunch fiber composites. International Journal of Molecular Sciences, 2014, 15, 14728–14742.

    Article  Google Scholar 

  46. Schwanninger M, Rodrigues J C, Pereira H, Hinterstoisser B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 2004, 36, 23–40.

    Article  Google Scholar 

  47. Koutsianitis D, Mitani C, Giagli K, Tsalagkas D, Halász K, Kolonics O, Gallis C, Csóka L. Properties of ultrasound extracted bicomponent lignocellulose thin films. Ultrasonics Sonochemistry, 2015, 23, 148–55.

    Article  Google Scholar 

  48. Chandel A K, Antunes F A, Anjos V, Bell M J, Rodrigues L N, Polikarpov I, de Azevedo E R, Bernardinelli O D, Rosa C A, Pagnocca F C, da Silva S S. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae. Biotechnology for Biofuels, 2014, 7, 63.

    Article  Google Scholar 

  49. Cao Y, Shibata S, Fukumoto I. Fabrication and flexural properties of bagasse fiber reinforced biodegradable composites. Journal of Macromolecular Science, Part B, 2006, 45, 463–474.

    Article  Google Scholar 

  50. Colom X, Carrillo F, Nogués F, Garriga P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Journal of Polymer Degradation and Stability, 2003, 80, 543–549.

    Article  Google Scholar 

  51. Mothé C, de Miranda I. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. Journal of Thermal Analysis and Calorimetry, 2009, 97, 661–665.

    Article  Google Scholar 

  52. Indarti E, Wanrosli W D. Thermal stability of oil palm empty fruit bunch (OPEFB) nanocrystalline cellulose: Effects of post-treatment of oven drying and solvent exchange techniques. Journal of Physics Conference Series, 2015, 622, 012025.

    Article  Google Scholar 

  53. Poletto M, Dettenborn J, Pistor V, Zeni M, Zattera A J. Materials produced from plant biomass: Part I: Evaluation of thermal stability and pyrolysis of wood. Materials Research, 2010, 13, 375–379.

    Article  Google Scholar 

  54. Cruz G, Monteiro P A, Braz C E, Seleghin Jr P, Polikarpov I, Crnkovic P M. Thermal and morphological evaluation of chemically pretreated sugarcane bagasse. International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 2013, 7, 435–440.

    Google Scholar 

  55. Mohomane S M, Motaung T E, Revaprasadu N. Thermal degradation kinetics of sugarcane bagasse and soft wood cellulose. Materials, 2017, 10, 1246.

    Article  Google Scholar 

  56. Barkoula N M, Peijs T. Interface engineering through matrix modification in natural fibre composites. In: Zafeiropoulos N E, ed., Interface Engineering of Natural Fibre Composites for Maximum Performance, Elsevier, Amsterdam, Netherlands, 2011, 43–81.

  57. Baltazar Baltazar-Y-Jimenez A, Bismarck A. Surface modification of lignocellulosic fibres in atmospheric air pressure plasma. Journal of Green Chemistry, 2007, 9, 1057–1066.

    Article  Google Scholar 

  58. Salam M A. Effect of hydrogen peroxide bleaching onto sulfonated jute fiber. Journal of Applied Polymer Science, 2006, 99, 3603–3607.

    Article  Google Scholar 

  59. García-Hernández E, Licea-Claveríe A, Zizumbo A, Alvarez-Castillo A, Herrera-Franco P J. Improvement of the interfacial compatibility between sugar cane bagasse fibers and polystyrene for composites. Polymer Composites, 2004, 25, 134–145.

    Article  Google Scholar 

  60. Alwani M S, Khalil H A, Islam N, Sulaiman O, Zaidon A, Dungani R. Microstructural study, tensile properties, and scanning electron microscopy fractography failure analysis of various agricultural residue fibers. Journal of Natural Fibers, 2015, 12, 154–168.

    Article  Google Scholar 

  61. Law K N, Daud W R, Ghazali A. Morphological and chemical nature of fiber strands of oil palm empty-fruit-bunch (OPEFB). BioResources, 2007, 2, 351–362.

    Google Scholar 

  62. Rosli N S, Harun S, Jahim J M, Othaman R. Chemical and physical characterization of oil palm empty fruit bunch. Malaysian Journal of Analytical Sciences, 2017, 21, 188–196.

    Article  Google Scholar 

  63. Puglia D, Monti M, Santulli C, Sarasini F, De Rosa I M, Kenny J M. Effect of alkali and silane treatments on mechanical and thermal behavior of Phormium tenax fibers. Fibers and Polymers, 2013, 14, 423–427.

    Article  Google Scholar 

  64. Yunus R, Salleh S F, Abdullah N, Biak D R. Effect of ultrasonic pre-treatment on low temperature acid hydrolysis of oil palm empty fruit bunch. Bioresource Technology, 2010, 101, 9792–9796.

    Article  Google Scholar 

  65. Pereira P H, Voorwald H C, Cioffi M O, Mullinari D R, Da Luz S M, Da Silva M L. Sugarcane bagasse pulping and bleaching: Thermal and chemical characterization. BioResources, 2011, 6, 2471–2482.

    Google Scholar 

  66. Sant’Anna C, de Souza W. Microscopy as a Tool to Follow Deconstruction of Lignocellulosic Biomass, Formatex Research Center, Espanha, 2012, 639–645.

Download references

Acknowledgement

We are thankful to Universiti Putra Malaysia for supporting this work through Putra Berimpak Grant No: UPM/800-3/3/1/GPB/2018/9668300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jawaid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramlee, N.A., Jawaid, M., Zainudin, E.S. et al. Modification of Oil Palm Empty Fruit Bunch and Sugarcane Bagasse Biomass as Potential Reinforcement for Composites Panel and Thermal Insulation Materials. J Bionic Eng 16, 175–188 (2019). https://doi.org/10.1007/s42235-019-0016-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-019-0016-5

Keywords

Navigation