Skip to main content

Advertisement

Log in

NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Designing a battery-type electrode material with high electrochemical performance based on eco-friendly and sustainable strategy has great significance for the development of supercapacitors. Herein, NiS nanoparticles are deposited on the surface of the porous hollow carbon spheres (PHCSs) derived from inexpensive and pollution-free yeast cells wall by an in situ hydrothermal process, forming a litchi shell-like three-dimensional (3D) double-shell structure. The PHCSs as a carbon substrate can effectively suppress the aggregation of NiS nanoparticles and ensure more ground storage sites to enhance the performance of the electrode material. More notably, the reaction concentration of nickel ion has a remarkable effect on the electrochemical performance of composites. The optimized sample shows a high specific capacity of 531.5 C g−1 at 1 A g−1, excellent rate capability of 412.1 C g−1 at 10 A g−1 and outstanding cycling life span of 83.3% after 5000 cycles. Furthermore, the assembled hybrid device delivers a high energy density of 24.4 Wh kg−1 at a power density of 767 W kg−1 and an excellent cycle stability by delivering 89.3% capacitance retention after 5000 ultralong cycles. This work offers a feasible strategy to synthesize economical and efficient electrode materials and demonstrates its enormous potential in energy storage.

Graphic abstract

A novel NiS/porous hollow carbon sphere composite with double-shell structure was synthesized by a green and available self-template method, which exhibits superior supercapacitor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chu S, Cui Y, Liu N (2016) The path towards sustainable energy. Nat Mater 16:16–22. https://doi.org/10.1038/nmat4834

    Article  CAS  Google Scholar 

  2. Yang ZF, Tian JR, Yin ZF, Cui CJ, Qian WZ, Wei F (2018) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141:467–480. https://doi.org/10.1016/j.carbon.2018.10.010

    Article  CAS  Google Scholar 

  3. Chen L, Guan LX, Tao JG (2019) Morphology control of Ni3S2 multiple structures and their effect on supercapacitor performances. J Mater Sci 54:12737–12746. https://doi.org/10.1007/s10853-019-03808-x

    Article  CAS  Google Scholar 

  4. Xie XB, Ni C, Wang BL, Zhang YP, Zhao XJ, Liu L, Wang B, Du W (2019) Recent advances in hydrogen generation process via hydrolysis of Mg-based materials: a short review. J Alloys Compd 816:152634. https://doi.org/10.1016/j.jallcom.2019.152634

    Article  CAS  Google Scholar 

  5. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. https://doi.org/10.1038/nature11475

    Article  CAS  Google Scholar 

  6. Mehare MD, Deshmukh AD, Dhoble SJ (2019) Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application. J Mater Sci 55:4213–4224. https://doi.org/10.1007/s10853-019-04236-7

    Article  CAS  Google Scholar 

  7. He YM, Chen WJ, Gao CT, Zhou JY, Li XD, Xie EQ (2013) An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 5:8799. https://doi.org/10.1039/c3nr02157b

    Article  CAS  Google Scholar 

  8. Wu D, Xie XB, Zhang YP, Zhang DM, Du W, Zhang XY, Wang B (2020) MnO2/Carbon Composites for Supercapacitor: synthesis and Electrochemical Performance. Front Mater 7:2. https://doi.org/10.3389/fmats.2020.00002

    Article  Google Scholar 

  9. Zhao BT, Zhang L, Zhen DX, Yoo S, Ding Y, Chen DC, Chen Y, Zhang QB, Doyle B, Xiong XH, Liu ML (2017) A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat Commun 8:14586. https://doi.org/10.1038/ncomms14586

    Article  CAS  Google Scholar 

  10. Zhao BT, Zheng Y, Ye F, Deng X, Xu X, Liu M, Shao Z (2015) Multifunctional iron oxide nanoflake/graphene composites derived from mechanochemical synthesis for enhanced lithium storage and electrocatalysis. ACS Appl Mater Interfaces 7:14446–14455. https://doi.org/10.1021/acsami.5b03477

    Article  CAS  Google Scholar 

  11. Li YM, Han X, Yi TF, He YB, Li XF (2019) Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J Energy Chem 31:54–78. https://doi.org/10.1016/j.jechem.2018.05.010

    Article  Google Scholar 

  12. Du W, Wang XN, Zhan J, Sun XQ, Kang LT, Jiang FY, Zhang XY, Shao Q, Dong MY, Liu H, Murugadoss V, Guo ZH (2018) Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim Acta 296:907–915. https://doi.org/10.1016/j.electacta.2018.11.074

    Article  CAS  Google Scholar 

  13. Sun Y, Xue JJ, Dong SY, Zhang YD, An YF, Ding B, Zhang TF, Dou H, Zhang XG (2020) Biomass-derived porous carbon electrodes for high-performance supercapacitors. J Mater Sci 55:5166–5176. https://doi.org/10.1007/s10853-019-04343-5

    Article  CAS  Google Scholar 

  14. Zhang Y, Sun WP, Rui XH, Li B, Tan HT, Guo G, Madhavi S, Zong Y, Yan QY (2015) One-pot synthesis of tunable crystalline Ni3S4@Amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small 11:3694–3702. https://doi.org/10.1002/smll.201403772

    Article  CAS  Google Scholar 

  15. Wang HF, Zhang KF, Song YQ, Qiu J, Wu J, Yan LF (2019) MnCo2S4 nanoparticles anchored to N-and S-codoped 3D graphene as a prominent electrode for asymmetric supercapacitors. Carbon 146:420–429. https://doi.org/10.1016/j.carbon.2019.02.035

    Article  CAS  Google Scholar 

  16. Miniach E, Śliwak A, Moyseowicz A, Fernández-Garcia L, González Z, Granda M, Menendez R, Gryglewicz G (2017) MnO2/thermally reduced graphene oxide composites for high-voltage asymmetric supercapacitors. Electrochim Acta 24:53–62. https://doi.org/10.1016/j.electacta.2017.04.056

    Article  CAS  Google Scholar 

  17. Zhao BT, Chen DC, Xiong XH, Song B, Hu RZ, Zhang QB, Rainwater BH, Waller GH, Zhen DX, Ding Y, Chen Y, Qu C, Dang D, Wong CP, Liu ML (2017) A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Mater 7:32–39. https://doi.org/10.1016/j.ensm.2016.11.010

    Article  Google Scholar 

  18. Zhao BT, Zhang L, Zhang QB, Chen DC, Cheng Y, Deng X, Chen Y, Murphy R, Xiong XH, Song B, Wong CP, Wang MS, Liu ML (2017) Rational design of nickel hydroxide-based nanocrystals on graphene for ultrafast energy storage. Adv Energy Mater 8:1702247. https://doi.org/10.1002/aenm.201702247

    Article  CAS  Google Scholar 

  19. Dai SG, Zhao BT, Qu C, Chen DC, Dang D, Song B, deGlee BM, Fu JW, Hu CG, Wong CP, Liu ML (2017) Controlled synthesis of three-phase NixSy/rGO nanoflake electrodes for hybrid supercapacitors with high energy and power density. Nano Energy 33:522–531. https://doi.org/10.1016/j.nanoen.2017.01.056

    Article  CAS  Google Scholar 

  20. Guo W, Wang JY, Fan C, Chen Z, Liu P, Zhu DJ, Xu ZL, Pang L, Li T (2017) Synthesis of carbon self-repairing porous g-C3N4 nanosheets/NiCo2S4 nanoparticles hybrid composite as high-performance electrode materials for supercapacitors. Electrochim Acta 253:68–77. https://doi.org/10.1016/j.electacta.2017.09.025

    Article  CAS  Google Scholar 

  21. Meng XY, Cao Q, Jin L, Zhang XH, Gong SL, Li P (2017) Carbon electrode materials for supercapacitors obtained by co-carbonization of coal-tar pitch and sawdust. J Mater Sci 52:760–769. https://doi.org/10.1007/s10853-016-0370-1

    Article  CAS  Google Scholar 

  22. Chen FS, Wang H, Ji S, Linkov V, Wang RF (2019) High-performance all-solid-state asymmetric supercapacitors based on sponge-like NiS/Ni3S2 hybrid nanosheets. Mater Today Energy 11:211–217. https://doi.org/10.1016/j.mtener.2018.12.002

    Article  Google Scholar 

  23. Zhang D, Sun WP, Zhang Y, Dou YH, Jiang YZ, Dou SX (2016) Engineering hierarchical hollow nickel sulfide spheres for high-performance sodium storage. Adv Funct Mater 26:7479–7485. https://doi.org/10.1002/adfm.201602933

    Article  CAS  Google Scholar 

  24. Wang K, Yan R, Tian XD, Wang Y, Lei SW, Li X, Yang T, Wang XJ, Song Y, Liu YQ, Liu ZJ, Guo QG (2019) Multi-scale biomass-based carbon microtubes decorated with Ni-Co sulphides nanoparticles for supercapacitors with high rate performance. Electrochim Acta 302:78–91. https://doi.org/10.1016/j.electacta.2019.02.015

    Article  CAS  Google Scholar 

  25. Yang JQ, Duan XC, Guo W, Li D, Zhang HL, Zheng WJ (2014) Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors. Nano Energy 5:74–81. https://doi.org/10.1016/j.nanoen.2014.02.006

    Article  CAS  Google Scholar 

  26. Peng L, Ji X, Wan HZ, Ruan YJ, Xu K, Chen C, Miao L, Jiang JJ (2015) Nickel Sulfide nanoparticles synthesized by microwave-assisted method as promising supercapacitor electrodes: an experimental and computational study. Electrochim Acta 182:361–367. https://doi.org/10.1016/j.electacta.2015.09.024

    Article  CAS  Google Scholar 

  27. Yan XY, Tong XL, Ma L, Tian YM, Cai YS, Gong CW, Zhang MG, Liang LP (2014) Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties. Mater Lett 124:133–136. https://doi.org/10.1016/j.matlet.2014.03.067

    Article  CAS  Google Scholar 

  28. Yang JQ, Guo W, Li D, Wei CY, Fan HM, Wu LY, Zheng WJ (2014) Synthesis and electrochemical performances of novel hierarchical flower-like nickel sulfide with tunable number of composed nanoplates. J Power Sour 268:113–120. https://doi.org/10.1016/j.jpowsour.2014.06.030

    Article  CAS  Google Scholar 

  29. Ma X, Zhang L, Xu GC, Zhang CY, Song HJ, He YT, Zhang C, Jia DZ (2017) Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors. Chem Eng J 320:22–28. https://doi.org/10.1016/j.cej.2017.03.033

    Article  CAS  Google Scholar 

  30. Laatikainen M, Sainio T (2019) Ion exchange in complexing media–Nickel removal from ammoniacal ammonium sulfate solutions. Chem Eng J 373:831–839. https://doi.org/10.1016/j.cej.2019.05.128

    Article  CAS  Google Scholar 

  31. Du DW, Lan R, Humphreys J, Amari H, Tao S (2018) Preparation of nanoporous nickel copper sulfide on carbon cloth for high-performance hybrid supercapacitors. Electrochim Acta 273:170–180. https://doi.org/10.1016/j.electacta.2018.04.041

    Article  CAS  Google Scholar 

  32. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520. https://doi.org/10.1039/b813846j

    Article  CAS  Google Scholar 

  33. Deng X, Zhao BT, Zhu L, Shao ZP (2015) Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon 93:48–58. https://doi.org/10.1016/j.carbon.2015.05.031

    Article  CAS  Google Scholar 

  34. Cai F, Sun R, Kang YR, Chen HY, Chen MH, Li QW (2015) One-step strategy to a three-dimensional NiS-reduced graphene oxide hybrid nanostructure for high performance supercapacitors. RSC Adv 5:23073–23079. https://doi.org/10.1039/c5ra02058a

    Article  CAS  Google Scholar 

  35. Sun CC, Ma MZ, Yang J, Zhang YF, Chen P, Huang W, Dong XC (2014) Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors. Sci Rep 4:7054. https://doi.org/10.1038/srep07054

    Article  CAS  Google Scholar 

  36. Reddy BJ, Vickraman P, Justin AS (2019) Electrochemical performance of nitrogen-doped graphene anchored nickel sulfide nanoflakes for supercapacitors. Appl Surf Sci 483:1142–1148. https://doi.org/10.1016/j.apsusc.2019.03.292

    Article  CAS  Google Scholar 

  37. Wang S, Sun W, Yang DS, Yang F (2019) Conversion of soybean waste to sub-micron porous-hollow carbon spheres for supercapacitor via a reagent and template-free route. Mater Today Energy 13:50–55. https://doi.org/10.1016/j.mtener.2019.04.015

    Article  Google Scholar 

  38. Sauer M, Porro D, Mattanovich D, Branduardi P (2010) 16 years research on lactic acid production with yeast–ready for the market? Biotechnol Genet Eng Rev 27:229–256. https://doi.org/10.1080/02648725.2010.10648152

    Article  CAS  Google Scholar 

  39. Yang QJ, Liu Y, Yan M, Lei Y, Shi WD (2019) MOF-derived hierarchical nanosheet arrays constructed by interconnected NiCo-alloy@NiCo-sulfide core-shell nanoparticles for high-performance asymmetric supercapacitors. Chem Eng J 370:666–676. https://doi.org/10.1016/j.cej.2019.03.239

    Article  CAS  Google Scholar 

  40. Liu X, Li Q, Zhao Y, Dong Y, Fan Q, Kuang Q (2017) A promising mechanical ball-milling method to synthesize carbon-coated Co9S8 nanoparticles as high-performance electrode for supercapacitor. J Mater Sci 52:13552–13560. https://doi.org/10.1007/s10853-017-1373-2

    Article  CAS  Google Scholar 

  41. Wang LC, Gao L, Wang J, Shen Y (2019) MoO3 nanobelts for high-performance asymmetric supercapacitor. J Mater Sci 54:13685–13693. https://doi.org/10.1007/s10853-019-03836-7

    Article  CAS  Google Scholar 

  42. Xie YP, Fang L, Cheng HW, Hu CJ, Zhao HB, Xu JQ, Fang JH, Lu XG, Zhang JJ (2016) Biological cell derived N-doped hollow porous carbon microspheres for lithium–sulfur batteries. J Mater Chem A 4:15612–15620. https://doi.org/10.1039/c6ta06164h

    Article  CAS  Google Scholar 

  43. Justin AS, Vickraman P, Reddy BJ (2019) Carbon Sphere@Nickel sulfide core-shell nanocomposite for high performance supercapacitor application. Curr Appl Phys 19:295–302. https://doi.org/10.1016/j.cap.2018.12.010

    Article  Google Scholar 

  44. Wang DW, Xu Wang YT, Xu W (2018) Rational synthesis of porous carbon nanocages and their potential application in high rate supercapacitors. J Electroanal Chem 815:166–174. https://doi.org/10.1016/j.jelechem.2018.03.016

    Article  CAS  Google Scholar 

  45. Zhang Y, Liu SS, Zheng XY, Wang X, Xu Y, Tang HQ, Kang FY, Yang QH, Luo JY (2017) Biomass organs control the porosity of their pyrolyzed carbon. Adv Funct Mater 27:1604687. https://doi.org/10.1002/adfm.201604687

    Article  CAS  Google Scholar 

  46. Zhang JC, Xu CY, Zhang DJ, Zhao JL, Zheng SX, Su HM, Wei FF, Yuan BQ, Fernandez C (2017) Facile synthesis of a nickel sulfide (NiS) hierarchical flower for the electrochemical oxidation of H2O2 and the methanol oxidation reaction (MOR). J Electrochem Soc 164:B92–B96. https://doi.org/10.1149/2.0221704jes

    Article  CAS  Google Scholar 

  47. Dirican M, Yanilmaz M, Zhang X (2014) Free-standing polyaniline–porous carbon nanofiber electrodes for symmetric and asymmetric supercapacitors. RSC Adv 4:59427–59435. https://doi.org/10.1039/c4ra09103e

    Article  CAS  Google Scholar 

  48. Li Y, An FF, Wu HR, Zhu SM, Lin CYZ, Xia MD, Xu K, Zhang D, Lian K (2019) A NiCo2S4/hierarchical porous carbon for high performance asymmetrical supercapacitor. J Power Sour 427:138–144. https://doi.org/10.1016/j.jpowsour.2019.04.060

    Article  CAS  Google Scholar 

  49. Tran VC, Sahoo S, Shim JJ (2018) Room-temperature synthesis of NiS hollow spheres on nickel foam for high-performance supercapacitor electrodes. Mater Lett 210:105–108. https://doi.org/10.1016/j.matlet.2017.08.136

    Article  CAS  Google Scholar 

  50. Gu HH, Huang YP, Zuo LZ, Fan W, Liu TX (2016) Electrospun carbon nanofiber@CoS2 core/sheath hybrid as an efficient all-pH hydrogen evolution electrocatalyst. Inorg Chem Front 3:1280–1288. https://doi.org/10.1039/c6qi00229c

    Article  CAS  Google Scholar 

  51. Guan B, Li Y, Yin BY, Liu KF, Wang DW, Zhang HH, Cheng CJ (2017) Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor. Chem Eng J 308:1165–1173. https://doi.org/10.1016/j.cej.2016.10.016

    Article  CAS  Google Scholar 

  52. Yu XY, Yu L, Shen LF, Song XH, Chen HY, Lou XW (2015) General formation of MS (M = Ni, Cu, Mn) box-in-box hollow structures with enhanced pseudocapacitive properties. Adv Funct Mater 24:7440–7446. https://doi.org/10.1002/adfm.201402560

    Article  CAS  Google Scholar 

  53. Zhao X, Sui JH, Li F, Fang HT, Wang HG, Li JY, Cai W, Cao GZ (2016) Lamellar MoSe2 nanosheets embedded with MoO2 nanoparticles: novel hybrid nanostructures promoted excellent performances for lithium ion batteries. Nanoscale 8:17902–17910. https://doi.org/10.1039/c6nr05584b

    Article  CAS  Google Scholar 

  54. Liu YP, Li ZL, Yao L, Chen SM, Zhang PX, Deng LB (2019) Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chem Eng J 366:550–559. https://doi.org/10.1016/j.cej.2019.02.125

    Article  CAS  Google Scholar 

  55. Li ZP, Mi YJ, Liu XH, Liu S, Yang SR, Wang JQ (2011) Flexible graphene/MnO2 composite papers for supercapacitor electrodes. J Mater Chem 21:14706–14711. https://doi.org/10.1039/c1jm11941a

    Article  CAS  Google Scholar 

  56. Hou CX, Tai ZX, Zhao LL, Zhai YJ, Hou Y, Fan YQ, Dang F, Wang J, Liu HK (2018) High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J Mater Chem A 6:9723–9736. https://doi.org/10.1039/c8ta02863j

    Article  CAS  Google Scholar 

  57. Hou CX, Hou Y, Fan YQ, Zhai YJ, Wang Y, Sun ZY, Fan RH, Dang F, Wang J (2018) Oxygen vacancy derived local build-in electric field in mesoporous hollow Co3O4 microspheres promotes high-performance Li-ion batteries. J Mater Chem A 6:6967–6976. https://doi.org/10.1039/c8ta00975a

    Article  CAS  Google Scholar 

  58. Hou CX, Wang J, Du W, Wang JC, Du Y, Liu CT, Zhang JX, Hou H, Dang F, Zhao LL, Guo ZH (2019) One-pot synthesized molybdenum dioxide–molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J Mater Chem A 7:13460–13472. https://doi.org/10.1039/c9ta03551f

    Article  CAS  Google Scholar 

  59. Du W, Wang XN, Ju XY, Xu K, Gao MJ, Zhang XT (2017) Carbonized Enteromorpha prolifera with porous architecture and its polyaniline composites as high-performance electrode materials for supercapacitors. J Electroanal Chem 802:15–21. https://doi.org/10.1016/j.jelechem.2017.08.044

    Article  CAS  Google Scholar 

  60. Gou J (2017) Ni2P/NiS2 composite with phase boundaries as high-performance electrode material for supercapacitor. J Electrochem Soc 164:A2956–A2961. https://doi.org/10.1149/2.0281713jes

    Article  CAS  Google Scholar 

  61. Sun PX, Li N, Wang CG, Yin JM, Zhao G, Hou PY, Xu XJ (2019) Nickel–cobalt based aqueous flexible solid state supercapacitors with high energy density by controllable surface modification. J Power Sour 427:56–61. https://doi.org/10.1016/j.jpowsour.2019.04.062

    Article  CAS  Google Scholar 

  62. Cheng LL, Hu YY, Ling L, Qiao DD, Cui SC, Jiao Z (2018) One-step controlled synthesis of hierarchical hollow Ni3S2/NiS@Ni3S4 core/shell submicrospheres for high-performance supercapacitors. Electrochim Acta 283:664–675. https://doi.org/10.1016/j.electacta.2018.07.013

    Article  CAS  Google Scholar 

  63. Wang LN, Liu JJ, Zhang LL, Dai BS, Xu M, Ji MW, Zhao XS, Cao CB, Zhang JT, Zhu HS (2015) Rigid three-dimensional Ni3S4 nanosheet frames: controlled synthesis and their enhanced electrochemical performance. RSC Adv 5:8422–8426. https://doi.org/10.1039/c4ra15607b

    Article  CAS  Google Scholar 

  64. Luo WH, Zhang GF, Cui YX, Sun Y, Qin Q, Zhang J, Zheng WJ (2017) One-step extended strategy for the ionic liquid-assisted synthesis of Ni3S4–MoS2 heterojunction electrodes for supercapacitors. J Mater Chem A 5:11278–11285. https://doi.org/10.1039/c7ta02268a

    Article  CAS  Google Scholar 

  65. Fan YM, Liu YC, Liu XB, Liu YN, Fan LZ (2017) Hierarchical porous NiCo2S4–rGO composites for high-performance supercapacitors. Electrochim Acta 249:1–8. https://doi.org/10.1016/j.electacta.2017.07.175

    Article  CAS  Google Scholar 

  66. Ruan YJ, Jiang JJ, Wan HZ, Ji X, Miao L, Peng L, Zhang B, Lv L, Liu J (2016) Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors. J Power Sour 301:122–130. https://doi.org/10.1016/j.jpowsour.2015.09.116

    Article  CAS  Google Scholar 

  67. Dai CS, Chien PY, Lin JY, Chou SW, Wu WK, Li PH, Wu KY, Lin TW (2013) Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl Mater Interfaces 5:12168–12174. https://doi.org/10.1021/am404196s

    Article  CAS  Google Scholar 

  68. Ruan YJ, Zha D, Lv L, Zhang B, Liu J, Ji X, Wang CD, Jiang JJ (2017) Al-doped β-NiS mesoporous nanoflowers for hybrid-type electrodes toward enhanced electrochemical performance. Electrochim Acta 236:307–318. https://doi.org/10.1016/j.electacta.2017.03.140

    Article  CAS  Google Scholar 

  69. Yu L, Zhang L, Wu HB, Lou XW (2014) Formation of NixCo3 − xS4 hollow nanoprisms with enhanced pseudocapacitive properties. Angew Chem Int Ed 53:3711–3714. https://doi.org/10.1002/anie.201400226

    Article  CAS  Google Scholar 

  70. Huo HH, Zhao YQ, Xu CL (2014) 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A 2:15111. https://doi.org/10.1039/c4ta02857k

    Article  CAS  Google Scholar 

  71. Zhu BT, Wang ZY, Ding S, Chen JS, Lou XW (2011) Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv 1:397. https://doi.org/10.1039/c1ra00240f

    Article  CAS  Google Scholar 

  72. Liu SD, Jun SC (2017) Hierarchical manganese cobalt sulfide core–shell nanostructures for high-performance asymmetric supercapacitors. J Power Sour 342:629–637. https://doi.org/10.1016/j.jpowsour.2016.12.057

    Article  CAS  Google Scholar 

  73. Wang MQ, Li ZQ, Wang CX, Zhao RZ, Li CX, Guo DX, Zhang LY, Yin LW (2017) Novel core-shell FeOF/Ni(OH)2 hierarchical nanostructure for all-solid-state flexible supercapacitors with enhanced performance. Adv Funct Mater 27:1701014. https://doi.org/10.1002/adfm.201701014

    Article  CAS  Google Scholar 

  74. Xiong XH, Waller G, Ding D, Chen DC, Rainwater B, Zhao B, Wang ZX, Liu ML (2015) Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16:71–80. https://doi.org/10.1016/j.nanoen.2015.06.018

    Article  CAS  Google Scholar 

  75. Huang L, Hou HJ, Liu BC, Zeinu K, Zhu XL, Yuan XQ, He XL, Wu LS, Hu JP, Yang JK (2017) Ultrahigh-performance pseudocapacitor based on phase-controlled synthesis of MoS2 nanosheets decorated Ni3S2 hybrid structure through annealing treatment. Appl Surf Sci 425:879–888. https://doi.org/10.1016/j.apsusc.2017.06.334

    Article  CAS  Google Scholar 

  76. Liu YK, Lu QL, Huang Z, Sun SQ, Yu B, Evariste U, Jiang GH, Yao JM (2018) Electrodeposition of NiCoS nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J Alloys Compd 762:301–311. https://doi.org/10.1016/j.jallcom.2018.05.239

    Article  CAS  Google Scholar 

  77. Zhang K, Wang QG, Thota A, Zhang WZ, Chen J, Wang Y, Wu XM, Wang SM (2020) Flexible 3D hierarchical porous NiCo2O4/CC electrode decorated by nitrogen-doped carbon from polyaniline carbonization for high-performance supercapacitors. J Mater Sci 55:5982–5993. https://doi.org/10.1007/s10853-020-04403-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research program of the Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences (NSKF201908).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Yu, H., Hou, C. et al. NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor. J Mater Sci 55, 14431–14446 (2020). https://doi.org/10.1007/s10853-020-05022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05022-6

Navigation