Skip to main content
Log in

Preparation of low internal resistance electrode material with multistage interconnected pores from coffee grounds

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Using biomass waste materials to prepare electrode materials with excellent properties is an effective strategy for solving current energy and environmental problems. In this work, coffee grounds were pretreated with Co(NO3)2 and Ni(NO3)2, then KOH was used to activate the pretreated coffee grounds at a high temperature to obtain a foam-like electrode material with interconnected microporous-mesoporous-macroporous hierarchical channels. This preparation method is simple and has low energy consumption, and the resulting material has an ultra-low internal resistance of 0.31 Ω. The specific capacitance of CGC-2 is 302.65 F g−1 at a current density of 1 A g−1. The low internal resistance and high electrical conductivity of this activated material are attributed to the presence of Co2+ and Ni2+ during carbonization, whose catalytic effect leads to a relatively ordered lattice structure. The interconnected structure of the final product is mainly caused by the strong activation function of KOH generating many pores. The prepared material exhibits good rate performance and cycling stability, and it has a Coulombic efficiency of nearly 93%. This work provides a novel idea for using biomass materials to fabricate high-performance electrode materials for supercapacitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the finding of this study are available within the paper and its Supplementary Information.

References

  1. Ma Y, Hou C, Kimura H et al (2023) Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review. Adv Compos Hybrid Mater 6:59

    Article  Google Scholar 

  2. Ma Y, Xie X, Yang W et al (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    Article  CAS  Google Scholar 

  3. Dang C, Mu Q, Xie X et al (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater 5:606–626

    Article  Google Scholar 

  4. Zhang Y, Liu L, Zhao L et al (2022) Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv Compos Hybrid Mater 5:2601–2610

    Article  CAS  Google Scholar 

  5. Sun L, Chen D, Wan S, Yu Z (2015) Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids. Bioresour Technol 198:300–308

    Article  CAS  PubMed  Google Scholar 

  6. Li G, Zhu W, Zhang C, Zhang S, Liu L, Zhu L, Zhao W (2016) Effect of amagnetic field on the adsorptive removal of methylene blue onto wheat straw biochar. Bioresour Technol 206:16–22

    Article  CAS  PubMed  Google Scholar 

  7. Makrigianni V, Giannakas A, Deligiannakis Y, Konstantinou I (2015) Adsorption of phenol and methylene blue from aqueous solutions by pyrolytic tire char: equilibrium and kinetic studies. J Environ Chem Eng 3:574–582

    Article  CAS  Google Scholar 

  8. Chen X, Paul R, Dai L (2017) Carbon-based supercapacitors for efficient energy storage. Natl Sci Rev 4:453–489

    Article  CAS  Google Scholar 

  9. Li Z, Xu Z, Tan X et al (2013) Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ Sci 6:871–878

    Article  CAS  Google Scholar 

  10. Li J, Liu W, Xiao D et al (2017) Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor. Appl Surf Sci 416:918–924

    Article  CAS  Google Scholar 

  11. Jiang L, Shen XP, Wu JL et al (2010) Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. J Appl Polym Sci 118(1):275–279

    Article  CAS  Google Scholar 

  12. Ansari S, Giannelis EP (2019) Functionalized graphene sheet-poly (vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B: Polym Phys 47(9):888–897

    Article  Google Scholar 

  13. Fukushima T, Kosaka A, Ishimura Y et al (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300(5628):2072–2074

    Article  CAS  PubMed  Google Scholar 

  14. Zhang L, Candelaria S, Tian J et al (2013) Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density. J Power Sources 236:215–223

    Article  CAS  Google Scholar 

  15. Wang C, Xiong Y, Wang H et al (2018) Pickles method’ inspired tomato derived hierarchical porous carbon for high-performance and safer capacitive output. J Electrochem Soc 165:A1054–A1063

    Article  CAS  Google Scholar 

  16. Li S, Hu B, Ding Y et al (2018) Wood-derived ultrathin carbon nanofiber aerogels. Angew Chem 130:1–7

    Google Scholar 

  17. Jia C, Chen C, Mi R et al (2019) Clear wood toward high-performance building materials. ACS Nano 13:9993–10001

    Article  CAS  PubMed  Google Scholar 

  18. Zhu M, Song J, Li T et al (2016) Highly anisotropic, highly transparent wood composites. Adv Mater 28:5181–5187

    Article  CAS  PubMed  Google Scholar 

  19. Song J, Chen C, Wang C et al (2017) Superflexible wood. ACS Appl Mater Interfaces 19:23520–23527

    Article  Google Scholar 

  20. Leyva-García S, Lozano-Castello D, Morallon E, Vogl T, Schütter C, Passerini S et al (2016) Electrochemical performance of a superporous activated carbon in ionic liquid-based electrolytes. J Power Sources 336:419–426

    Article  Google Scholar 

  21. Mostazo-Lopez MJ, Ruiz-Rosas R, Castro-Muniz A, Nishihara H, Kyotani T, Morallon E et al (2018) Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors. Carbon 129:510–519

    Article  CAS  Google Scholar 

  22. Genovese M, Lian K (2017) Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes. J Mater Chem A 5(8):3939–3947

    Article  CAS  Google Scholar 

  23. [a]Alberto Adan-Mas, Alcaraz L et al (2020) Coffee-derived activated carbon from second biowaste for supercapacitor applications. Waste Manag 120:280–289

    Article  PubMed  Google Scholar 

  24. Jonghyun Choi C, Zequine et al (2019) Waste coffee management: Deriving high-performance supercapacitors using nitrogen-doped coffee-derived carbon. Carbon Res 4:12–19

    Google Scholar 

  25. Yun YS, Park MH et al (2015) Hierarchically Porous Carbon Nanosheets from Waste Coffee Grounds for Supercapacitors. ACS Appl Mater Interf 7(6):3684–3690

    Article  CAS  Google Scholar 

  26. Islam MJ, Rahman MJ, Mieno T, Safely (2020) Functionalized carbon nanotube–coated jute fibers for advanced technology. Adv Compos Hybrid Mater 3:285–293

    Article  CAS  Google Scholar 

  27. Wang H, Gao Q, Hu J (2009) High hydrogen storage capacity of porous carbons prepared by using activated carbon. J Am Chem Soc 131(20):7016–7022

    Article  CAS  PubMed  Google Scholar 

  28. Long C, Chen X, Jiang L, Zhi L, Fan Z (2015) Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12:141–151

    Article  CAS  Google Scholar 

  29. Wu Z-S, Winter A, Chen L, Sun Y, Turchanin A, Feng X et al (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24(37):5130–5135

    Article  CAS  PubMed  Google Scholar 

  30. Lu Y, Yu G, Wei X et al (2019) Fabric/multi-walled carbon nanotube sensor for portable on-site copper detection in water. Adv Compos Hybrid Mater 2:711–719

    Article  CAS  Google Scholar 

  31. Ren D, Dong L, Wang J et al (2018) Facile preparation of high-performance stretchable fiber-like electrodes and supercapacitors. Chemistryselect 3:4179–4184

    Article  CAS  Google Scholar 

  32. Ba Y, Zhou S, Jiao S et al (2018) Fabrication of polyaniline/copper sulfide/poly(ethylene terephthalate) thread electrode for flexible fiber-shaped supercapacitors. J Appl Polym Sci 135:46769

    Article  Google Scholar 

  33. Cai J, Lv C, Watanabe A (2017) High-performance all-solid-state flexible carbon/TiO2 micro-supercapacitors with photorechargeable capability. RSC Adv 7:415

    Article  CAS  Google Scholar 

  34. Hao GP, Lu AH, Dong W, Jin ZY, Zhang XQ, Zhang JT et al (2013) Sandwich-type microporous carbon nanosheets for enhanced supercapacitor performance. Adv Energy Mater 3(11):1421–1427

    Article  CAS  Google Scholar 

  35. Yang M, Zhong Y, Zhou X, Ren J, Su L, Wei J et al (2014) Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors. J Mater Chem A 2(31):12519–12525

    Article  CAS  Google Scholar 

  36. Zhou JS, Lian J, Hou L, Zhang JC, Gou HY, Xia MR et al (2015) Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat Commun 6:8503–8511

    Article  CAS  PubMed  Google Scholar 

  37. Chen P, Yang J-J, Li S-S, Wang Z, Xiao TY, Qian Y-H et al (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2:249–256

    Article  CAS  Google Scholar 

  38. Sheng Z-H, Shao L, Chen J-J, Bao W-J, Wang F-B, Xia X-H (2001) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5(6):4350–4358

    Article  Google Scholar 

  39. Usachov D, Vilkov O, Grüneis A, Haberer D, Fedorov A, Adamchuk VK et al (2011) Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett 11(12):5401–5407

    Article  CAS  PubMed  Google Scholar 

  40. Li F, Li Q et al (2022) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259

    Article  Google Scholar 

  41. Li Y, Ye K, Cheng K, Cao D, Pan Y, Kong S et al (2014) Anchoring CuO nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors. J Electroanal Chem 727:154–162

    Article  CAS  Google Scholar 

  42. Wei Fang Q, Wang K, Rong et al (2024) MXene enhanced 3D needled Waste Denim Felt for High-Performance Flexible Supercapacitors. Nano-Micro Lett 16:36

    Article  Google Scholar 

  43. Yuan G, Wan T, BaQais A, Mu Y et al (2023) Boron and fluorine co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101

    Article  CAS  Google Scholar 

  44. Yu X, Park HS (2014) Sulfur-incorporated porous graphene films for high performance flexible electrochemical capacitors. Carbon 77:59–65

    Article  CAS  Google Scholar 

  45. Xu P, Gu T, Cao Z et al (2014) Carbon nanotube fiber based stretchable wire-shaped supercapacitors. Adv Energy Mater 4:1300759

    Article  Google Scholar 

  46. Vadukumpully S, Paul J, Mahanta N et al (2011) Flexible conductive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205

    Article  CAS  Google Scholar 

  47. Zhang X, Liu X, Zheng W et al (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/Li cl solution. Carbohydr Polym 88(1):26–30

    Article  CAS  Google Scholar 

  48. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  PubMed  Google Scholar 

  49. Danish M, Hashim R, Ibrahim M et al (2014) Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass Bioenerg 61:167–178

    Article  CAS  Google Scholar 

  50. Li J, Li X, Zhao P et al (2015) Searching for magnetism in pyrrolic N-doped graphene synthesized via hydrothermal reaction. Carbon 84:460–468

    Article  CAS  Google Scholar 

  51. Jafri R, Rajalakshhmi N, Dhathathreyan K et al (2015) Nitrogen doped graphene prepared by hydrothermal and thermal solid state methods as catalyst supports for fuel cell. Int J Hydrogen Energ 40:4337–4348

    Article  CAS  Google Scholar 

  52. Wu X, Wen T, Guo H et al (2013) Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 7:3589–3597

    Article  CAS  PubMed  Google Scholar 

  53. Ana Kalijadis J, Đorđević et al (2015) Preparation of boron-doped hydrothermal carbon from glucose for carbon paste electrode. Carbon 95:42–50

    Article  Google Scholar 

  54. Miki, Inada et al (2017) Structural analysis and capacitive properties of carbon spheres prepared by hydrothermal carbonization. Adv Powder Technol 28(3):884–889

    Article  Google Scholar 

  55. Zhongtai Lin X, Li H, Zhang BB, Xu et al (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10:4358–4392

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by The National Natural Science Foundation of China (No. 31971587), The Fundamental Research Funds for the Central Universities (No. 2572016AB63), the Fundamental Research Funds for the Northeast Forestry University, and the Large Equipment Test Foundation of Northeast Forestry University.

Funding

Author: Bin Li; Funder: The Fundamental Research Funds for the Central Universities, 2572016AB63. Author: Jian Li; No funder. Author: Minghui Guo; Funder: The National Natural Science Foundation of China, 31971587.

Author information

Authors and Affiliations

Authors

Contributions

Bin Li is the main designer and operator of the experiment,Also responsible for the paper data analysis and paper writing; Minghui Guo was responsible for proposing the problems existing in the experiment and the improvement plan; Jian Li was responsible for the review and modification of the article.

Corresponding author

Correspondence to Minghui Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, J. & Guo, M. Preparation of low internal resistance electrode material with multistage interconnected pores from coffee grounds. Adv Compos Hybrid Mater 7, 48 (2024). https://doi.org/10.1007/s42114-024-00858-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00858-x

Keywords

Navigation