Skip to main content
Log in

Paper-based microfluidic sensor array for tetracycline antibiotics discrimination using lanthanide metal–carbon quantum dots composite ink

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Tetracycline antibiotics are extensively used as anti-infective drugs, but their residues pose a significant threat to the environment and public health. However, there is a lack of effective and affordable tools for rapid and accurate identification of tetracycline antibiotics. This work constructed a paper-based fluorescence sensor array platform by using a fully inkjet imprinting technique for the discrimination of tetracycline antibiotics. Three lanthanide metal ions (Ln3+) of Dy3+, Eu3+, and Sm3+ served as recognition receptors and were respectively combined with carbon quantum dots (CQDs) to configure CQDs-Ln3+ composite material inks. These inks were then directly printed on a filter paper using an inkjet printer to fabricate a paper-based microfluidic sensor array. Tetracycline antibiotics could not only generate an inner filter effect on CQDs but also created an antenna effect with Ln3+ through their β-diketone structures to induce fluorescence resonance energy transfer between CQDs and Ln3+, ultimately resulting in dual fluorescence quenching of CQDs. The sensor array successfully discriminated six different tetracycline antibiotics, and each of them generated a distinct fluorescence “fingerprint.” The platform was validated to differentiate the six tetracyclines (5 µM) and different concentrations (1 ~ 60 µM) for individual tetracycline. In addition, the practicality of the sensor array was verified by achieving discrimination of tetracycline antibiotics in real samples and accurate identification of blind samples. The incorporation of inkjet printing technology enables the straightforward, cost-effective, and scalable fabrication of a paper-based microfluidic analytical device (μPAD). This platform offers excellent portability, ease of operation, and broad applicability, facilitating on-site detection of multiple indicators in disease diagnosis, food safety, and environmental contamination.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Jiang X, Chen S, Zhang X, Qu L, Qi H, Wang B, Xu B, Huang Z (2023) Carbon-doped flower-like Bi2WO6 decorated carbon nanosphere nanocomposites with enhanced visible light photocatalytic degradation of tetracycline. Adv Compos Hybrid Mater 6:47. https://doi.org/10.1007/s42114-022-00616-x

    Article  CAS  Google Scholar 

  2. Xu L, Zhang H, Xiong P, Zhu Q, Liao C, Jiang G (2021) Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: a review. Sci Total Environ 753:141975. https://doi.org/10.1016/j.scitotenv.2020.141975

    Article  CAS  Google Scholar 

  3. Pattanayak DS, Pal D, Mishra J, Thakur C, Wasewar KL (2023) Doped graphitic carbon nitride (g-C3N4) catalysts for efficient photodegradation of tetracycline antibiotics in aquatic environments. Environ Sci Pollut Res 30:24919–24926. https://doi.org/10.1007/s11356-022-19766-y

    Article  CAS  Google Scholar 

  4. Talebi Bezmin Abadi A, Rizvanov AA, Haertlé T, Blatt NL (2019) World health organization report: current crisis of antibiotic resistance. J BioNanoScience 9:778–788. https://doi.org/10.1007/s12668-019-00658-4

    Article  Google Scholar 

  5. Kang F, Jiang X, Wang Y, Ren J, Xu BB, Gao G, Huang Z, Guo Z (2023) Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorg Chem Front 10:6045–6057. https://doi.org/10.1039/D3QI01283B

    Article  CAS  Google Scholar 

  6. Zeng J, Xie W, Guo Y, Zhao T, Zhou H, Wang Q, Li H, Guo Z, Xu BB, Gu H (2024) Magnetic field facilitated electrocatalytic degradation of tetracycline in wastewater by magnetic porous carbonized phthalonitrile resin. Appl Catal B 340:123225. https://doi.org/10.1016/j.apcatb.2023.123225

    Article  CAS  Google Scholar 

  7. Li Z, Xie W, Yao F, Du A, Wang Q, Guo Z, Gu H (2022) Comprehensive electrocatalytic degradation of tetracycline in wastewater by electrospun perovskite manganite nanoparticles supported on carbon nanofibers. Adv Compos Hybrid Mater 5:2092–2105. https://doi.org/10.1007/s42114-022-00550-y

    Article  CAS  Google Scholar 

  8. Sun P, Zhou S, Yang Y, Liu S, Cao Q, Wang Y, Wågberg T, Hu G (2022) Artificial chloroplast-like phosphotungstic acid — iron oxide microbox heterojunctions penetrated by carbon nanotubes for solar photocatalytic degradation of tetracycline antibiotics in wastewater. Adv Compos Hybrid Mater 5:3158–3175. https://doi.org/10.1007/s42114-022-00462-x

    Article  CAS  Google Scholar 

  9. Ahmadi SAR, Kalaee MR, Moradi O, Nosratinia F, Abdouss M (2021) Core–shell activated carbon-ZIF-8 nanomaterials for the removal of tetracycline from polluted aqueous solution. Adv Compos Hybrid Mater 4:1384–1397. https://doi.org/10.1007/s42114-021-00357-3

    Article  CAS  Google Scholar 

  10. Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509–1518. https://doi.org/10.1021/ac015588m

    Article  CAS  Google Scholar 

  11. Bruno F, Curini R, Corcia AD, Nazzari M, Pallagrosi M (2002) An original approach to determining traces of tetracycline antibiotics in milk and eggs by solid-phase extraction and liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 16:1365–1376. https://doi.org/10.1002/rcm.724

    Article  CAS  Google Scholar 

  12. Zhang Y, Lu S, Liu W, Zhao C, Xi R (2007) Preparation of anti-tetracycline antibodies and development of an indirect heterologous competitive enzyme-linked immunosorbent assay to detect residues of tetracycline in milk. J Agric Food Chem 55:211–218. https://doi.org/10.1021/jf062627s

    Article  CAS  Google Scholar 

  13. Liang Y, Zhou T (2019) Recent advances of online coupling of sample preparation techniques with ultra high performance liquid chromatography and supercritical fluid chromatography. J Sep Sci 42:226–242. https://doi.org/10.1002/jssc.201800721

    Article  CAS  Google Scholar 

  14. Kinter M (2004) Toward broader inclusion of liquid chromatography-mass spectrometry in the clinical laboratory. Clin Chem 50:1500–1502. https://doi.org/10.1373/clinchem.2004.037523

    Article  CAS  Google Scholar 

  15. Jiang N, Hu D, Xu Y, Chen J, Chang X, Zhu Y, Li Y, Guo Z (2021) Ionic liquid enabled flexible transparent polydimethylsiloxane sensors for both strain and temperature sensing. Adv Compos Hybrid Mater 4:574–583. https://doi.org/10.1007/s42114-021-00262-9

    Article  CAS  Google Scholar 

  16. Roy S, Arshad F, Eissa S, Safavieh M, Alattas SG, Ahmed MU, Zourob M (2022) Recent developments towards portable point-of-care diagnostic devices for pathogen detection. Sensors & Diagnostics 1:87–105. https://doi.org/10.1039/D1SD00017A

    Article  CAS  Google Scholar 

  17. Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS (2017) Paper-based microfluidic devices: emerging themes and applications. Anal Chem 89:71–91. https://doi.org/10.1021/acs.analchem.6b04581

    Article  CAS  Google Scholar 

  18. Noviana E, Ozer T, Carrell CS, Link JS, McMahon C, Jang I, Henry CS (2021) Microfluidic paper-based analytical devices: from design to applications. Chem Rev 121:11835–11885. https://doi.org/10.1021/acs.chemrev.0c01335

    Article  CAS  Google Scholar 

  19. Maejima K, Tomikawa S, Suzuki K, Citterio D (2013) Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Adv 3:9258–9263. https://doi.org/10.1039/C3RA40828K

    Article  CAS  Google Scholar 

  20. Yamada K, Henares TG, Suzuki K, Citterio D (2015) Paper-based inkjet-printed microfluidic analytical devices. Angew Chem Int Ed 54:5294–5310. https://doi.org/10.1002/anie.201411508

    Article  CAS  Google Scholar 

  21. Fu L-M, Wang Y-N (2018) Detection methods and applications of microfluidic paper-based analytical devices. TrAC Trends Anal Chem 107:196–211. https://doi.org/10.1016/j.trac.2018.08.018

    Article  CAS  Google Scholar 

  22. Ariza-Avidad M, Salinas-Castillo A, Capitán-Vallvey LF (2016) A 3D µPAD based on a multi-enzyme organic–inorganic hybrid nanoflower reactor. Biosens Bioelectron 77:51–55. https://doi.org/10.1016/j.bios.2015.09.012

    Article  CAS  Google Scholar 

  23. Zhou C, Cui K, Liu Y, Hao S, Zhang L, Ge S, Yu J (2021) Ultrasensitive microfluidic paper-based electrochemical/visual analytical device via signal amplification of Pd@Hollow Zn/Co core–shell ZIF67/ZIF8 nanoparticles for prostate-specific antigen detection. Anal Chem 93:5459–5467. https://doi.org/10.1021/acs.analchem.0c05134

    Article  CAS  Google Scholar 

  24. Tong X, Lin X, Duan N, Wang Z, Wu S (2022) Laser-printed paper-based microfluidic chip based on a multicolor fluorescence carbon dot biosensor for visual determination of multiantibiotics in aquatic products. ACS Sensors 7:3947–3955. https://doi.org/10.1021/acssensors.2c02008

    Article  CAS  Google Scholar 

  25. Yang R, Li F, Zhang W, Shen W, Yang D, Bian Z, Cui H (2019) Chemiluminescence immunoassays for simultaneous detection of three heart disease biomarkers using magnetic carbon composites and three-dimensional microfluidic paper-based device. Anal Chem 91:13006–13013. https://doi.org/10.1021/acs.analchem.9b03066

    Article  CAS  Google Scholar 

  26. Prabhu NN, Ch RJ, Rajendra BV, George G, Mourad AHI, Shivamurthy B (2022) Electrospun ZnO nanofiber based resistive Gas/Vapor sensors -a review. Eng Sci 19:59–82. https://doi.org/10.30919/es8d612

    Article  CAS  Google Scholar 

  27. Lokh PE, Kadam V, Jagatap C, Chavan US, Udayabhaskar R, Pathan HM (2022) Hierarchical ultrathin nanosheet of Ni(OH)2/rGO composite chemically deposited on Ni foam for NOx gas sensors. ES Mater Manuf 17:53–56. https://doi.org/10.30919/esmm5e721

    Article  CAS  Google Scholar 

  28. Li F, Wu N, Kimura H, Wang Y, Xu BB, Wang D, Li Y, Algadi H, Guo Z, Du W, Hou C (2023) Initiating binary metal oxides microcubes electromagnetic wave absorber toward ultrabroad absorption bandwidth through interfacial and defects modulation. Nanomicro Lett 15:220. https://doi.org/10.1007/s40820-023-01197-0

    Article  CAS  Google Scholar 

  29. Li F, Li Q, Kimura H, Xie X, Zhang X, Wu N, Sun X, Xu BB, Algadi H, Pashameah RA, Alanazi AK, Alzahrani E, Li H, Du W, Guo Z, Hou C (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  CAS  Google Scholar 

  30. Thota SP, Bag PP, Vadlani PV, Belliraj SK (2022) Plant biomass derived multidimensional nanostructured materials: a green alternative for energy storage. Eng Sci 18:31–58. https://doi.org/10.30919/es8d664

    Article  CAS  Google Scholar 

  31. Yang W, Peng D, Kimura H, Zhang X, Sun X, Pashameah RA, Alzahrani E, Wang B, Guo Z, Du W, Hou C (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5:3146–3157. https://doi.org/10.1007/s42114-022-00556-6

    Article  CAS  Google Scholar 

  32. Hou C, Yang W, Kimura H, Xie X, Zhang X, Sun X, Yu Z, Yang X, Zhang Y, Wang B, Xu BB, Sridhar D, Algadi H, Guo Z, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  CAS  Google Scholar 

  33. Huang K, Wu Y, Liu J, Chang G, Pan X, Weng X, Wang Y, Lei M (2022) A double-layer carbon nanotubes/polyvinyl alcohol hydrogel with high stretchability and compressibility for human motion detection. Eng Sci 17:319–327. https://doi.org/10.30919/es8d625

    Article  CAS  Google Scholar 

  34. Ma Y, Hou C, Kimura H, Xie X, Jiang H, Sun X, Yang X, Zhang Y, Du W (2023) Recent advances in the application of carbon-based electrode materials for high-performance zinc ion capacitors: a mini review. Adv Compos Hybrid Mater 6:59. https://doi.org/10.1007/s42114-023-00636-1

    Article  Google Scholar 

  35. Ma Y, Xie X, Yang W, Yu Z, Sun X, Zhang Y, Yang X, Kimura H, Hou C, Guo Z, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924. https://doi.org/10.1007/s42114-021-00358-2

    Article  CAS  Google Scholar 

  36. Sun Z, Qi H, Chen M, Guo S, Huang Z, Maganti S, Murugadoss V, Huang M, Guo Z (2022) Progress in cellulose/carbon nanotube composite flexible electrodes for supercapacitors. Eng Sci 18:59–74. https://doi.org/10.30919/es8d588

  37. Zhang H, Ding X, Wang S, Huang Y, Zeng X-F, Maganti S, Jiang Q, Huang M, Guo Z, Cao D (2022) Heavy metal removal from wastewater by a polypyrrole-derived N-doped carbon nanotube decorated with fish scale-like molybdenum disulfide nanosheets. Eng Sci 18:320–328. https://doi.org/10.30919/es8d649

  38. Zhong Y, Liu D, Yang Q, Qu Y, Yu C, Yan K, Xie P, Qi X, Guo Z, Toktarbay Z (2023) Boosting microwave absorption performance of bio-gel derived Co/C nanocomposites. Eng Sci 26:988. https://doi.org/10.30919/es988

  39. Sun Z, Qu K, Cheng Y, You Y, Huang Z, Umar A, Ibrahim YS, Algadi HA, Castañeda L, Colorado HA, Guo Z (2021) Corncob-derived activated carbon for efficient: adsorption dye in sewage. ES Food Agrofor 4:61–74. https://doi.org/10.30919/esfaf473

  40. Guo J, Xi S, Zhang Y, Li X, Chen Z, Xie J, Zhao X, Liu Z, Colorado H, El-Bahy ZM, Abdul W, Zhu J (2023) Biomass-based electromagnetic wave absorption materials with unique structures: a critical review. ES Food Agrofor 13:900. https://doi.org/10.30919/esfaf900

  41. Cai J, Xi S, Zhang C, Li X, Helal MH, El-Bahy  M, Ibrahim MM, Zhu H, Singh MV, Wasnik P, Xu BB, Guo Z, Algadi H, Guo J (2023) Overview of biomass valorization: Case study of nanocarbons, biofuels and their derivatives. J Agri Food Res 14:100714. https://doi.org/10.1016/j.jafr.2023.100714

  42. Vijeata A, Chaudhary GR, Umar A, Chaudhary S (2021) Distinctive solvatochromic response of fluorescent carbon dots derived from different components of aegle marmelos plant. Eng Sci 15:197–209. https://doi.org/10.30919/es8e512

  43. Yuan G, Wan T, BaQais A, Mu Y, Cui D, Amin MA, Li X, Xu BB, Zhu X, Algadi H, Li H, Wasnik P, Lu N, Guo Z, Wei H, Cheng B (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101. https://doi.org/10.1016/j.carbon.2023.118101

  44. Ruan J, Chang Z, Rong H, Alomar T S, Zhu D, AlMasoud N, Liao Y, Zhao R, Zhao X, Li Y, Xu B B, Guo Z, El-Bahy Z M, Li H, Zhang X, Ge S (2023) High-conductivity nickel shells encapsulated wood-derived porous carbon for improved electromagnetic interference shielding. Carbon 213:118208. https://doi.org/10.1016/j.carbon.2023.118208

  45. Han S, Yang L, Wen Z, Chu S, Wang M, Wang Z, Jiang C (2020) A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline. J Hazard Mater 398:122894. https://doi.org/10.1016/j.jhazmat.2020.122894

  46. Xu J, Guo S, Jia L, Zhu T, Chen X, Zhao T (2021) A smartphone-integrated method for visual detection of tetracycline. Chem Eng J 416:127741. https://doi.org/10.1016/j.cej.2020.127741

  47. Zhang L, Wang Y, Jia L, Bi N, Bie H, Chen X, Zhang C, Xu J (2021) Ultrasensitive and visual detection of tetracycline based on dual-recognition units constructed multicolor fluorescent nano-probe. J Hazard Mater 409:124935. https://doi.org/10.1016/j.jhazmat.2020.124935

  48. Albert KJ, Lewis NS, Schauer CL, Sotzing GA, Stitzel SE, Vaid TP, Walt DR (2000) Cross-reactive chemical sensor arrays. Chem Rev 100:2595–2626. https://doi.org/10.1021/cr980102w

    Article  CAS  Google Scholar 

  49. Liu Y, Minami T, Nishiyabu R, Wang Z, Anzenbacher P Jr (2013) Sensing of carboxylate drugs in urine by a supramolecular sensor array. J Am Chem Soc 135:7705–7712. https://doi.org/10.1021/ja4015748

    Article  CAS  Google Scholar 

  50. Balakrishnan A, Medikonda J, Namboothiri PK, Manik M, Natarajan A (2022) Role of wearable sensors with machine learning approaches in gait analysis for parkinson disease assessment: Rev Eng Sci 19:5–19. https://doi.org/10.30919/es8e622

  51. Nallayagari AR, Sgreccia E, Pizzoferrato R, Cabibbo M, Kaciulis S, Bolli E, Pasquini L, Knauth P, Di Vona ML (2022) Tuneable properties of carbon quantum dots by different synthetic methods. J Nanostructure Chem 12:565–580. https://doi.org/10.1007/s40097-021-00431-8

    Article  CAS  Google Scholar 

  52. Wang J, Monton MRN, Zhang X, Filipe CDM, Pelton R, Brennan JD (2014) Hydrophobic sol–gel channel patterning strategies for paper-based microfluidics. Lab Chip 14:691–695. https://doi.org/10.1039/C3LC51313K

    Article  CAS  Google Scholar 

  53. Wang L, Zhang X, Yang K, Wang L, Lee C-S (2020) Oxygen/nitrogen-related surface states controlled carbon nanodots with tunable full-color luminescence: Mechanism and bio-imaging. Carbon 160:298–306. https://doi.org/10.1016/j.carbon.2020.01.029

  54. Campos BB, Contreras-Cáceres R, Bandosz TJ, Jiménez-Jiménez J, Rodríguez-Castellón E, da Silva JCE, Algarra M (2016) Carbon dots as fluorescent sensor for detection of explosive nitrocompounds. Carbon 106:171–178. https://doi.org/10.1016/j.carbon.2016.05.030

  55. Li H, Han S, Lyu B, Hong T, Zhi S, Xu L, Xue F, Sai L, Yang J, Wang X, He B (2021) Tunable light emission from carbon dots by controlling surface defects. Chin Chem Lett 32:2887–2892. https://doi.org/10.1016/j.cclet.2021.03.051

  56. Wei W, He J, Wang Y, Kong M (2019) Ratiometric method based on silicon nanodots and Eu3+ system for highly-sensitive detection of tetracyclines. Talanta 204:491–498. https://doi.org/10.1016/j.talanta.2019.06.036

  57. Li Z, Han Q, Yan T, Huang Z, Song Y, Wang Y, Zhang X (2022) Up-conversion luminescence and optical temperature sensing of Er3+, Yb3+ co-doped Gd2O3 phosphors with different F-/Ln3+. J Alloys Compd 904:164009. https://doi.org/10.1016/j.jallcom.2022.164009

  58. Wang F, Zhang Y, Fan X, Wang M (2006) One-pot synthesis of chitosan/LaF3:Eu3+ nanocrystals for bio-applications. Nanotechnology 17:1527. https://doi.org/10.1088/0957-4484/17/5/060

    Article  CAS  Google Scholar 

  59. Zhang S, Yin W, Yang Z, Shah I, Yang Y, Li Z, Zhang S, Zhang B, Lei Z, Ma H (2020) Facile polymerization strategy for the construction of Eu3+-based fluorescent materials with the capability of distinguishing D2O from H2O. Anal Chem 92:7808–7815. https://doi.org/10.1021/acs.analchem.0c00981

    Article  CAS  Google Scholar 

Download references

Funding

The work is financially supported by National Natural Science Foundation of China (82104121, 82173778), Key Program of Natural Science Foundation of Shenzhen (JCYJ20220818102218039), and Shenzhen Science and Technology Program (KQTD20170810105439418).

Author information

Authors and Affiliations

Authors

Contributions

Liang Zhu provided research design and wrote the main manuscript text. Qingjin Wu and Xuecui Mei were responsible for experimental data collection and organization. Yingchun Li and Jiao Yang revised the main manuscript and supported funding. All authors participated in discussion, revision, and approvement of the manuscript.

Corresponding author

Correspondence to Jiao Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9752 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Wu, Q., Mei, X. et al. Paper-based microfluidic sensor array for tetracycline antibiotics discrimination using lanthanide metal–carbon quantum dots composite ink. Adv Compos Hybrid Mater 6, 221 (2023). https://doi.org/10.1007/s42114-023-00805-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00805-2

Keywords

Navigation