Skip to main content
Log in

Z-scheme metal organic framework@graphene oxide composite photocatalysts with enhanced photocatalytic degradation of tetracycline

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Domestic wastewater contains trace amounts of organic pollutants that are difficult to remove, such as antibiotics and dyes, so effective degradation technologies need to be found. Therefore, we report the fabrication of a novel Z-scheme MIL-125(Ti)/GO photocatalyst by an in-situ growing method. The photodegradation experiment showed that MIL-125(Ti)/GO degraded TC by 81.1% at 5% GO addition, which is 1.7 and 3.8 times higher than MIL-125(Ti) and GO, respectively. The degradation rate reached 0.0201 min−1, 3.3 times and 8.1 times higher than MIL-125 (Ti) and GO, respectively. The study shows that GO and MIL-125(Ti), as electron donors and electron acceptors, respectively, form a Z-scheme heterojunction structure, which effectively improves the photocatalytic performance of MIL-125(Ti). MIL-125(Ti)/GO has excellent structural stability and reusable availability, and the main reactive radicals are ·O2 and h+. This study provides new insights into the design and fabrication of MIL-125 (Ti) derivatives as photodegrading organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Li H, Huang W, Qiu B, Thabet HK, Alhashmialameer D, Huang M, Guo Z (2022) Effective removal of proteins and polysaccharides from biotreated wastewater by polyaniline composites. Adv Compos Hybrid Mater 5:1888–1898. https://doi.org/10.1007/s42114-022-00508-0

  2. Zhang H, Ding X, Wang S, Huang Y, Zeng XF, Maganti S, Jiang Q, Huang M, Guo Z, Cao D (2022) Heavy metal removal from wastewater by a polypyrrole-derived N-doped carbon nanotube decorated with fish scale-like molybdenum disulfide nanosheets. Eng Sci. https://doi.org/10.30919/es8d649

  3. Zhang S, Cheng B, Jia Z, Zhao Z, Jin X, Zhao Z, Wu G (2022) The art of framework construction: hollow‑structured materials toward high‑efficiency electromagnetic wave absorption. Adv Compos Hybrid Mater 5:1658–1698. https://doi.org/10.1007/s42114-022-00514-2

  4. Wang C, Liu X, Yang T, Sridhar D, Algadi H, Xu BB, El-Bahy ZM, Li H, Ma Y, Li T, Guo Z (2023) An overview of metal-organic frameworks and their magnetic composites for the removal of pollutants. Sep Purif Technol 320. https://doi.org/10.1016/j.seppur.2023.124144

  5. Xue R, Guo H, Yang W, Huang SL, Yang GY (2022) Cooperation between covalent organic frameworks (COFs) and metal organic frameworks (MOFs): application of COFs-MOFs hybrids. Adv Compos Hybrid Mater 5:1595–1611. https://doi.org/10.1007/s42114-022-00432-3

  6. Tsai P (2020) Performance of masks and discussion of the inactivation of SARS-CoV-2. Eng Sci. https://doi.org/10.30919/es8d1110

  7. Liu H, Zhang J, Ao D (2018) Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production. Appl Catal B Environ 221:433–442. https://doi.org/10.1016/j.apcatb.2017.09.043

  8. Bi F, Zhang X, Chen J, Yang Y, Wang Y (2020) Excellent catalytic activity and water resistance of UiO-66-supported highly dispersed Pd nanoparticles for toluene catalytic oxidation. Appl Catal B Environ 269. https://doi.org/10.1016/j.apcatb.2020.118767

  9. Liang R, Huang R, Wang X, Ying S, Yan G, Wu L (2019) Functionalized MIL-68(In) for the photocatalytic treatment of Cr(VI)-containing simulation wastewater: Electronic effects of ligand substitution. Appl Surf Sci 464:396–403. https://doi.org/10.1016/j.apsusc.2018.09.100

  10. Huang Q, Hu Y, Pei Y, Zhang J, Fu M (2019) In situ synthesis of TiO2@NH2-MIL-125 composites for use in combined adsorption and photocatalytic degradation of formaldehyde. Appl Catal B Environ 259. https://doi.org/10.1016/j.apcatb.2019.118106

  11. Yang Z, Xu X, Liang X, Lei C, Cui Y, Wu W, Yang Y, Zhang Z, Lei Z (2017) Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions. Appl Catal B Environ 205:42–54. https://doi.org/10.1016/j.apcatb.2016.12.012

  12. Rahmani A, Emrooz HB, Abedi S, Morsali A (2018) Synthesis and characterization of CdS/MIL-125 (Ti) as a photocatalyst for water splitting. Mater Sci Semicond Process 80:44–51. https://doi.org/10.1016/j.mssp.2018.02.013

  13. Guan Z, Li X, Wu Y, Chen Z, Huang X, Wang D, Yang Q, Liu J, Tian S, Chen X, Zhao H (2021) AgBr nanoparticles decorated 2D/2D GO/Bi2WO6 photocatalyst with enhanced photocatalytic performance for the removal of tetracycline hydrochloride. J Chem Eng 410. https://doi.org/10.1016/j.cej.2020.128283

  14. Vasseghian Y, Dragoi EN, Moradi M, Khaneghah AM (2021) A review on graphene-based electrochemical sensor for mycotoxins detection. Food Chem Toxicol 148:111931. https://doi.org/10.1016/j.fct.2020.111931

  15. Yang R, Zhu Z, Hu C, Zhong S, Zhang L, Liu B, Wang W (2020) One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chem Eng J 390. https://doi.org/10.1016/j.cej.2020.124522

  16. Ismael AM, El-Shazly AN, Gaber SE, Rashad MM, Kamel AH, Hassan SS (2020) Novel TiO(2)/GO/CuFe(2)O(4) nanocomposite: a magnetic, reusable and visible-light-driven photocatalyst for efficient photocatalytic removal of chlorinated pesticides from wastewater. RSC Adv 10:34806–34814. https://doi.org/10.1039/d0ra02874f

  17. Song X, Wang Y, Zhu T, Liu J, Zhang S (2021) Facile synthesis a novel core–shell amino functionalized MIL-125(Ti) micro-photocatalyst for enhanced degradation of tetracycline hydrochloride under visible light. Chem Eng J 416. https://doi.org/10.1016/j.cej.2021.129126

  18. Niu M, Sui K, Wu X, Cao D, Liu C (2021) GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy. Adv Compos Hybrid Mater 5:450–460. https://doi.org/10.1007/s42114-021-00296-z

  19. Sun P, Zhou S, Yang Y, Liu S, Cao Q, Wang Y, Wågberg T, Hu G (2022) Artificial chloroplast-like phosphotungstic acid — iron oxide microbox heterojunctions penetrated by carbon nanotubes for solar photocatalytic degradation of tetracycline antibiotics in wastewater. Adv Compos Hybrid Mater 5:3158–3175. https://doi.org/10.1007/s42114-022-00462-x

  20. Kim SN, Kim J, Kim HY, Cho HY, Ahn WS (2013) Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catal Today 204:85–93. https://doi.org/10.1016/j.cattod.2012.08.014

  21. Zhang J, Zhang Z, Jiao Y, Yang H, Li Y, Zhang J, Gao P (2019) The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J Power Sources 419:99–105. https://doi.org/10.1016/j.jpowsour.2019.02.059

  22. Pu L, Zhang J, Jiresse NK, Gao Y, Zhou H, Naik N, Gao P, Guo Z (2021) N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Mater 5:356–369. https://doi.org/10.1007/s42114-021-00371-5

  23. Zhang Y, Li G, Lu H, Lv Q, Sun Z (2014) Synthesis, characterization and photocatalytic properties of MIL-53(Fe)–graphene hybrid materials. RSC Adv 4. https://doi.org/10.1039/c3ra46706f

  24. Yuan X, Wang H, Wu Y, Zeng G, Chen X, Leng L, Wu Z, Li H (2016) One-pot self-assembly and photoreduction synthesis of silver nanoparticle-decorated reduced graphene oxide/MIL-125(Ti) photocatalyst with improved visible light photocatalytic activity. Appl Organomet Chem 30:289–296. https://doi.org/10.1002/aoc.3430

  25. Liu J, Pu L, Zhang Q, Cheng Z, Zheng Y, Wang Y, Liu W, Li S, Zhang J (2023) Tracking surface ionic movement of Ni3S2@CuS electrode materials with high electrochemical performance. J Chem Eng 461 (2023). https://doi.org/10.1016/j.cej.2023.141910

  26. Li Z, Xie W, Yao F, Du A, Wang Q, Guo Z, Gu H (2022) Comprehensive electrocatalytic degradation of tetracycline in wastewater by electrospun perovskite manganite nanoparticles supported on carbon nanofibers. Adv Compos Hybrid Mater 5:2092–2105. https://doi.org/10.1007/s42114-022-00550-y

  27. Lin C, Liu B, Pu L, Sun Y, Xue Y, Chang M, Li X, Lu X, Chen R, Zhang J (2021) Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light. Adv Compos Hybrid Mater 4:339–349. https://doi.org/10.1007/s42114-021-00228-x

  28. Chen Z, Yu S, Liu J, Zhang Y, Wang Y, Yu J, Yuan M, Zhang P, Liu W, Zhang J (2023) C, F co-doping Ag/TiO(2) with visible light photocatalytic performance toward degrading Rhodamine B. Environ Res 232:116311. https://doi.org/10.1016/j.envres.2023.116311

  29. Sutar RS, Barkul RP, Delekar SD, Patil MK (2020) Sunlight assisted photocatalytic degradation of organic pollutants using g-C3N4-TiO2 nanocomposites. Arab J Chem 13:4966–4977. https://doi.org/10.1016/j.arabjc.2020.01.019

  30. Pan Y, Zhang Y, Huang Y, Jia Y, Chen L (2022) Enhanced photocatalytic oxidation degradability for real cyanide wastewater by designing photocatalyst GO/TiO2/ZSM-5: Performance and mechanism research. Chem Eng J 428. https://doi.org/10.1016/j.cej.2021.131257

  31. Ma Y, Lu Y, Hai G, Dong W, Li R, Liu J, Wang G (2020) Bidentate carboxylate linked TiO(2) with NH(2)-MIL-101(Fe) photocatalyst: a conjugation effect platform for high photocatalytic activity under visible light irradiation. Sci Bull (Beijing) 65:658–669. https://doi.org/10.1016/j.scib.2020.02.001

  32. Chen J, Zhang X, Shi X, Bi F, Yang Y, Wang Y (2020) Synergistic effects of octahedral TiO(2)-MIL-101(Cr) with two heterojunctions for enhancing visible-light photocatalytic degradation of liquid tetracycline and gaseous toluene. J Colloid Interface Sci 579:37–49. https://doi.org/10.1016/j.jcis.2020.06.042

  33. Prasad C, Liu Q, Tang H, Yuvaraja G, Long J, Rammohan A, Zyryanov GV (2020) An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. J Mol Liq 297. https://doi.org/10.1016/j.molliq.2019.111826

  34. Zeng J, Xie W, Guo Y, Zhao T, Zhou H, Wang Q, Li H, Guo Z, Xu BB, Gu H (2024) Magnetic field facilitated electrocatalytic degradation of tetracycline in wastewater by magnetic porous carbonized phthalonitrile resin. Appl Catal B Environ 340. https://doi.org/10.1016/j.apcatb.2023.123225

  35. Li Z, Che G, Jiang W, Liu L, Wang H (2019) Visible-light-driven CQDs@MIL-125(Ti) nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of tetracycline. RSC Adv 9:33238–33245. https://doi.org/10.1039/c9ra05600a

  36. Lv N, Li Y, Huang Z, Li T, Ye S, Dionysiou DD, Song X (2019) Synthesis of GO/TiO2/Bi2WO6 nanocomposites with enhanced visible light photocatalytic degradation of ethylene. Appl Catal B Environ 246:303–311. https://doi.org/10.1016/j.apcatb.2019.01.068

  37. Han SY, Pan DL, Chen H, Bu XB, Gao YX, Gao H, Tian Y, Li GS, Wang G, Cao SL, Wan CQ (2018) A methylthio-functionalized-MOF photocatalyst with high performance for visible-light-driven H(2) evolution. Angew Chem Int Ed Engl 57:9864–9869. https://doi.org/10.1002/anie.201806077

  38. Gao Q, Lin D, Fan Y, He Q, Wang Q (2019) Visible light induced photocatalytic reduction of Cr(VI) by self-assembled and amorphous Fe-2MI. Chem Eng J 374:10–19. https://doi.org/10.1016/j.cej.2019.05.151

  39. Swain G, Sultana S, Parida K (2020) Constructing a novel surfactant-free MoS2 nanosheet modified MgIn2S4 Marigold microflower: an efficient visible-light driven 2D-2D p-n heterojunction photocatalyst toward HER and pH regulated NRR. ACS Sustain Chem Eng 8:4848–4862. https://doi.org/10.1021/acssuschemeng.9b07821

  40. Hunge YM, Yadav AA, Dhodamani AG, Suzuki N, Terashima C, Fujishima A, Mathe VL (2020) Enhanced photocatalytic performance of ultrasound treated GO/TiO2 composite for photocatalytic degradation of salicylic acid under sunlight illumination. Ultrason Sonochem 61. https://doi.org/10.1016/j.ultsonch.2019.104849

  41. Mohite VS, Mahadik MA, Kumbhar SS, Hunge YM, Kim JH, Moholkar AV, Rajpure KY, Bhosale CH (2015) Photoelectrocatalytic degradation of benzoic acid using Au doped TiO2 thin films. J Photochem Photobiol B Biol 142:204–211. https://doi.org/10.1016/j.jphotobiol.2014.12.004

  42. Lou C, Jing T, Tian J, Zheng Y, Zhang J, Dong M, Wang C, Hou C, Fan J, Guo Z (2019) 3-Dimensional graphene/Cu/Fe3O4 composites: immobilized laccase electrodes for detecting bisphenol A. J Mater Res 34:2964–2975. https://doi.org/10.1557/jmr.2019.248

  43. Yuan M, Liu S, Li H, Gao Y, Yu S, Yu Y, Meng L, Liu W, Zhang J, Gao P (2023) Perovskite-loaded plasmonic gold nanorod composites enhanced solar cell performance. Adv Compos Hybrid Mater 6. https://doi.org/10.1007/s42114-023-00627-2

  44. Kang F, Jiang X, Wang Y, Ren J, Xu BB, Gao G, Huang Z, Guo Z (2023) Electron-rich biochar enhanced Z-scheme heterojunctioned bismuth tungstate/bismuth oxyiodide removing tetracycline. Inorg Chem Front. https://doi.org/10.1039/d3qi01283b

  45. Sun D, Fu Y, Liu W, Ye L, Wang D, Yang L, Fu X, Li Z (2013) Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Chemistry 19:14279–14285. https://doi.org/10.1002/chem.201301728

  46. Lu C, Zhang P, Jiang S, Wu X, Song S, Zhu M, Lou Z, Li Z, Liu F, Liu Y, Wang Y (2017) Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl Catal B Environ 200:378–385. https://doi.org/10.1016/j.apcatb.2016.07.036

  47. Ahmadi SA, Kalaee MR, Moradi O, Nosratinia F, Abdouss M (2021) Core–shell activated carbon-ZIF-8 nanomaterials for the removal of tetracycline from polluted aqueous solution. Adv Compos Hybrid Mater 4:1384–1397. https://doi.org/10.1007/s42114-021-00357-3

  48. Liccardo L, Bordin M, Sheverdyaeva PM, Belli M, Moras P, Vomiero A, Moretti E (2023) Surface defect engineering in colored TiO2 hollow spheres toward efficient photocatalysis. Adv Funct Mater. https://doi.org/10.1002/adfm.202212486

  49. Sharma B, Frontiera RR, Henry AI, Ringe E, Van Duyne RP (2012) SERS: Materials, applications, and the future. Mater Today 15:16–25. https://doi.org/10.1016/s1369-7021(12)70017-2

  50. Jiang W, Li Z, Liu C, Wang D, Yan G, Liu B, Che G (2021) Enhanced visible-light-induced photocatalytic degradation of tetracycline using BiOI/MIL-125(Ti) composite photocatalyst. J Alloys Compd 854. https://doi.org/10.1016/j.jallcom.2020.157166

  51. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed Engl 42:4908–4911. https://doi.org/10.1002/anie.200351577

  52. Wen XJ, Zhang C, Niu CG, Zhang L, Huang DW, Wang XY, Zhang XG, Zeng GM (2016) Facile synthesis of a visible light α-Fe2O3/BiOBr composite with high photocatalytic performance. RSC Adv 6:4035–4042. https://doi.org/10.1039/c5ra21359b

  53. Xu D, Cheng B, Cao S, Yu J (2015) Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl Catal B Environ 164:380–388. https://doi.org/10.1016/j.apcatb.2014.09.051

  54. Fatima R, Kim JO (2022) De novo synthesis of photocatalytic bifunctional MIL-125(Ti)/gC(3)N(4)/RGO through sequential self-assembly and solvothermal route. Environ Res 205:112422. https://doi.org/10.1016/j.envres.2021.112422

  55. Fujishima A, Zhang X (2006) Titanium dioxide photocatalysis: present situation and future approaches. Comptes Rendus Chimie 9:750–760. https://doi.org/10.1016/j.crci.2005.02.055

  56. Guo X, Yang F, Sun X, Han C, Bai Y, Liu G, Liu W, Wang R (2022) Fabrication of a novel separation-freeheterostructured photocatalyst with enhancedvisible light activity in photocatalytic degradationof antibioticst. Mater Chem A. https://doi.org/10.1039/D1TA09757A

Download references

Funding

This work was financially supported by the Yangzhou Guangling District Key Research and Development Plan (Industrial Foresight and Common Key Technology) Project (No. GL202116) and the Jiangsu Postgraduate Practice Innovation Plan in 2023 (No. SJCX23-2188). The researchers would like to acknowledge Deanship of Scientific Research, Taif University for funding this work.

Author information

Authors and Affiliations

Authors

Contributions

Jijun Tang: Conceptualization, Writing - original draft, Visualization. Guicheng Gao: Formal analysis, Writing - original draft, Visualization. Weiqi Luo: Formal analysis, Investigation. Qiuyang Dai: Formal analysis, Investigation. Yuchen Wang: Formal analysis, Investigation. Hala A. Elzilal: Writing - review & editing, Supervision. Hala M. Abo-Dief: Writing - review & editing, Supervision. Hassan Algadi: Writing - review & editing, Supervision. Jiaoxia Zhang: Writing - review & editing, Supervision.

Corresponding author

Correspondence to Jijun Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 121 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Gao, G., Luo, W. et al. Z-scheme metal organic framework@graphene oxide composite photocatalysts with enhanced photocatalytic degradation of tetracycline. Adv Compos Hybrid Mater 6, 190 (2023). https://doi.org/10.1007/s42114-023-00771-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00771-9

Keywords

Navigation