Skip to main content

Advertisement

Log in

Novel pyrene-based aggregation-induced emission luminogen (AIEgen) composite phase change fibers with satisfactory fluorescence anti-counterfeiting, temperature sensing, and high-temperature warning functions for solar-thermal energy storage

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Advanced multifunctional composite materials have been a significant force in the advancement of efficient solar-thermal energy conversion and storage, which is critical to address current energy shortage problems. In this study, novel phase change material (PCM) composite fiber films, composed of Py-CH (one novel pyrene-based aggregation-induced emission luminogen (AIEgen))/polyvinyl pyrrolidone (PVP)/polyethylene glycol (PEG), have been produced by electrospinning technology with PEG as the phase change material. The combination of AIE and twist intermolecular charge transfer (TICT) characteristics of Py-CH together with the water absorption performance of PVP afforded a temperature-dependent fluorescence change. On increasing the temperature from 30 to 160 °C, the APP (pyrene-based AIEgen/PVP/PEG) composites exhibit a blue-shifted emission with a color changed from green-yellow to cyan, from cyan to blue, and finally, to purple. Furthermore, the entanglement of the macromolecular chains and distinctive porous structure between PVP and PEG played a significant role in preventing the leakage and transfer issues of PEG. Therefore, the composite fiber films with a PEG content of 60% exhibited latent heat in the range of 79~89 J/g and were extremely stable for up to 100 heating-cooling cycles. As a result, the application of these APP composites could be further promoted to solar energy conversation and storage, high-temperature warning, and anti-counterfeiting applications. Hence, composite materials containing the pyrene-based AIEgen and phase change materials have opened up new avenues for the possible application of such materials in thermal energy storage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bai H, Li C, Shi G (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23:1089–1115. https://doi.org/10.1002/adma.201003753

    Article  CAS  Google Scholar 

  2. Cao Y, Weng M, Mahmoud M et al (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5:1253–1267. https://doi.org/10.1007/s42114-022-00504-4

    Article  CAS  Google Scholar 

  3. Xu D, Huang G, Guo L et al (2022) Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv Compos Hybrid Mater 1–17. https://doi.org/10.1007/s42114-021-00317-x

  4. Liu C, Huang Q, Zheng K et al (2020) Impact of lithium salts on the combustion characteristics of electrolyte under diverse pressures. Energies 13:5373. https://doi.org/10.3390/en13205373

    Article  CAS  Google Scholar 

  5. Cao Y, Zeng Z, Huang D et al (2022) Multifunctional phase change composites based on biomass/MXene-derived hybrid scaffolds for excellent electromagnetic interference shielding and superior solar/electro-thermal energy storage. Nano Res 15:8524–8535. https://doi.org/10.1007/s12274-022-4626-6

    Article  CAS  Google Scholar 

  6. Huang D, Chen Y, Zhang L et al (2023) Flexible thermoregulatory microcapsule/polyurethane-MXene composite films with multiple thermal management functionalities and excellent EMI shielding performance. J Mater Sci Technol. https://doi.org/10.1016/j.jmst.2023.05.013

  7. Da Cunha JP, Eames P (2016) Thermal energy storage for low and medium temperature applications using phase change materials–a review. Appl Energy 177:227–238. https://doi.org/10.1016/j.apenergy.2016.05.097

    Article  CAS  Google Scholar 

  8. Shen R, Weng M, Zhang L et al (2022) Biomass-based carbon aerogel/Fe3O4@ PEG phase change composites with satisfactory electromagnetic interference shielding and multi-source driven thermal management in thermal energy storage. Compos - A: Appl Sci Manuf 163:107248. https://doi.org/10.1016/j.compositesa.2022.107248

  9. Yuan K, Shi J, Aftab W et al (2020) Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Adv Func Mater 30:1904228. https://doi.org/10.1002/adfm.201904228

    Article  CAS  Google Scholar 

  10. Huang X, Alva G, Jia Y et al (2017) Morphological characterization and applications of phase change materials in thermal energy storage: a review. Renew Sustain Energy Rev 72:128–145. https://doi.org/10.1016/j.rser.2017.01.048

    Article  CAS  Google Scholar 

  11. Zhu C, Lu X, Wu H et al (2022) Constructing heat conduction path and flexible support skeleton for PEG-based phase change composites through salt template method. Compos Sci Technol 226:109532. https://doi.org/10.1016/j.compscitech.2022.109532

  12. Mohamed NH, Soliman FS, El Maghraby H et al (2017) Thermal conductivity enhancement of treated petroleum waxes, as phase change material, by α nano alumina: energy storage. Renew Sustain Energy Rev 70:1052–1058. https://doi.org/10.1016/j.rser.2016.12.009

    Article  CAS  Google Scholar 

  13. Luo R, Wang L, Yu W et al (2023) High energy storage density titanium nitride-pentaerythritol solid–solid composite phase change materials for light-thermal-electric conversion. Appl Energy 331:120377. https://doi.org/10.1016/j.apenergy.2022.120377

  14. Liu Y, Yang H, Wang Y et al (2021) Fluorescent thermochromic wood-based composite phase change materials based on aggregation-induced emission carbon dots for visual solar-thermal energy conversion and storage. Chem Eng J 424:130426. https://doi.org/10.1016/j.cej.2021.130426

  15. Chen C, Wang L, Huang Y (2007) Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer 48:5202–5207. https://doi.org/10.1016/j.polymer.2007.06.069

    Article  CAS  Google Scholar 

  16. Meng Y, Zhao Y, Zhang Y et al (2020) Induced dipole force driven PEG/PPEGMA form-stable phase change energy storage materials with high latent heat. Chem Eng J 390:124618. https://doi.org/10.1016/j.cej.2020.124618

  17. Gao H, Bing N, Bao Z et al (2023) Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination. Chem Eng J 454:140362. https://doi.org/10.1016/j.cej.2022.140362

  18. Sundararajan S, Samui AB, Kulkarni PS (2017) Versatility of polyethylene glycol (PEG) in designing solid–solid phase change materials (PCMs) for thermal management and their application to innovative technologies. J Mater Chem A 5:18379–18396. https://doi.org/10.1039/C7TA04968D

    Article  CAS  Google Scholar 

  19. Wu B, Lao D, Fu R et al (2020) Novel PEG/EP form-stable phase change materials with high thermal conductivity enhanced by 3D ceramics network. Ceram Int 46:25285–25292. https://doi.org/10.1016/j.ceramint.2020.06.321

    Article  CAS  Google Scholar 

  20. Ji R, Zhang Q, Zhou F et al (2021) Electrospinning fabricated novel poly (ethylene glycol)/graphene oxide composite phase-change nano-fibers with good shape stability for thermal regulation. J Energy Storage 40:102687. https://doi.org/10.1016/j.est.2021.102687

  21. Huang J, Su J, Xu W et al (2022) High enthalpy efficiency lignin-polyimide porous hybrid aerogel composite phase change material with flame retardancy for superior solar-to-thermal energy conversion and storage. Sol Energy Mater Sol Cells 248:112036. https://doi.org/10.1016/j.solmat.2022.112036

  22. Sheng X, Dong D, Lu X et al (2020) MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. Compos - A: Appl Sci Manuf 138:106067. https://doi.org/10.1016/j.compositesa.2020.106067

  23. Xia Q, Zhang Y, Li Y et al (2022) A historical review of aggregation-induced emission from 2001 to 2020: a bibliometric analysis. Aggregate 3:e152. https://doi.org/10.1002/agt2.152

  24. Islam MM, Hu Z, Wang Q et al (2019) Pyrene-based aggregation-induced emission luminogens and their applications. Mater Chem Front 3:762–781. https://doi.org/10.1039/C9QM00090A

    Article  CAS  Google Scholar 

  25. Xue K, Wang C, Wang J et al (2021) A sensitive and reliable organic fluorescent nanothermometer for noninvasive temperature sensing. J Am Chem Soc 143:14147–14157. https://doi.org/10.1021/jacs.1c04597

    Article  CAS  Google Scholar 

  26. Yang Y, Liu S, Zhang G et al (2023) Cellulose nanofiber encapsulated polyethylene glycol phase change composites containing AIE-gen for monitoring leak process. Compos - A: Appl Sci Manuf 107452. https://doi.org/10.1016/j.compositesa.2023.107452

  27. Figueira-Duarte TM, Mullen K (2011) Pyrene-based materials for organic electronics. Chem Rev 111:7260–7314. https://doi.org/10.1021/cr100428a

    Article  CAS  Google Scholar 

  28. Feng X, Hu JY, Redshaw C et al (2016) Functionalization of pyrene to prepare luminescent materials—typical examples of synthetic methodology. Chem–A Euro J 22:11898–11916. https://doi.org/10.1002/chem.201600465

  29. Trattnig R, Pevzner L, Jäger M et al (2013) Bright blue solution processed triple-layer polymer light-emitting diodes realized by thermal layer stabilization and orthogonal solvents. Adv Func Mater 23:4897–4905. https://doi.org/10.1002/adfm.201300360

    Article  CAS  Google Scholar 

  30. Ni XL, Zeng X, Redshaw C et al (2011) Ratiometric fluorescent receptors for both Zn2+ and H2PO4 ions based on a pyrenyl-linked triazole-modified homooxacalix[3]arene: a potential molecular traffic signal with an RS latch logic circuit. J Org Chem 76:5696–5702. https://doi.org/10.1021/jo2007303

    Article  CAS  Google Scholar 

  31. Wang X, Wang L, Mao X et al (2021) Pyrene-based aggregation-induced emission luminogens (AIEgens) with less colour migration for anti-counterfeiting applications. J Mater Chem C 9:12828–12838. https://doi.org/10.1039/D1TC03022A

    Article  CAS  Google Scholar 

  32. Liu Q, Yue S, Yan Z et al (2022) Cyano and isocyano-substituted tetraphenylethylene with AIE behavior and mechanoresponsive behavior. Chin J Struct Chem 41:2204075–2204082. https://doi.org/10.14102/j.cnki.0254-5861.2021-0049

  33. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89. https://doi.org/10.1088/0957-4484/17/14/R01

    Article  CAS  Google Scholar 

  34. Niu L, Li X, Zhang Y et al (2022) Electrospun lignin-based phase-change nanofiber films for solar energy storage. ACS Sustain Chem Eng 10:13081–13090. https://doi.org/10.1021/acssuschemeng.2c03462

    Article  CAS  Google Scholar 

  35. Crawford AG, Liu Z, Mkhalid IA et al (2012) Synthesis of 2-and 2, 7-functionalized pyrene derivatives: an application of selective c h borylation. Chem–A Euro J 18:5022–5035. https://doi.org/10.1002/chem.201103774

  36. Sreenivasulu C, Satyanarayana G (2018) Zinc-chloride-promoted domino reaction of phenols with terminal alkynes under solvent-free conditions: an efficient synthesis of chromenes. Eur J Org Chem 2018:2846–2857. https://doi.org/10.1002/ejoc.201800391

    Article  CAS  Google Scholar 

  37. Crawford AG, Dwyer AD, Liu Z et al (2011) Experimental and theoretical studies of the photophysical properties of 2-and 2, 7-functionalized pyrene derivatives. J Am Chem Soc 133:13349–13362. https://doi.org/10.1021/ja2006862

    Article  CAS  Google Scholar 

  38. McRae EG, Kasha M (1958) Enhancement of phosphorescence ability upon aggregation of dye molecules. J Chem Phys 28:721–722. https://doi.org/10.1063/1.1744225

    Article  CAS  Google Scholar 

  39. Sasaki S, Suzuki S, Sameera W et al (2016) Highly twisted N, N-dialkylamines as a design strategy to tune simple aromatic hydrocarbons as steric environment-sensitive fluorophores. J Am Chem Soc 138:8194–8206. https://doi.org/10.1021/jacs.6b03749

    Article  CAS  Google Scholar 

  40. Sasaki S, Suzuki S, Igawa K et al (2017) The K-region in pyrenes as a key position to activate aggregation-induced emission: effects of introducing highly twisted n, n-dimethylamines. J Org Chem 82:6865–6873. https://doi.org/10.1021/acs.joc.7b00996

    Article  CAS  Google Scholar 

  41. Wang E, Lam J, Hu R et al (2014) Twisted intramolecular charge transfer, aggregation-induced emission, supramolecular self-assembly and the optical waveguide of barbituric acid-functionalized tetraphenylethene. J Mater Chem C 2:1801–1807. https://doi.org/10.1039/c3tc32161d

    Article  CAS  Google Scholar 

  42. Kéri O, Bárdos P, Boyadjiev S et al (2019) Thermal properties of electrospun polyvinylpyrrolidone/titanium tetraisopropoxide composite nanofibers. J Therm Anal Calorim 137:1249–1254. https://doi.org/10.1007/s10973-019-08030-0

    Article  CAS  Google Scholar 

  43. MacKenzie AP, Rasmussen DH (1972) Interactions in the water-polyvinylpyrrolidone system at low temperatures. In: Jellinek HHG (ed) Water structure at the water-polymer interface, Springer. https://doi.org/10.1007/978-1-4615-8681-4_12

  44. Borrmann D, Danzer A, Sadowski G (2022) Water sorption in glassy polyvinylpyrrolidone-based polymers. Membranes 12:434. https://doi.org/10.3390/membranes12040434

    Article  CAS  Google Scholar 

  45. Zhang J, Zhang H, Lam JW et al (2021) Restriction of intramolecular motion (RIM): investigating AIE mechanism from experimental and theoretical studies. Chem Res Chin Univ 37:1–15. https://doi.org/10.1007/s40242-021-0381-6

    Article  CAS  Google Scholar 

  46. Wang P, Zhang W, Wang L et al (2021) Synthesis of superabsorbent polymer hydrogels with rapid swelling: effect of reaction medium dosage and polyvinylpyrrolidone on water absorption rate. Langmuir 37:14614–14621. https://doi.org/10.1021/acs.langmuir.1c02295

    Article  CAS  Google Scholar 

  47. Zhang W, Wang P, Deng Y et al (2021) Preparation of superabsorbent polymer gel based on PVPP and its application in water-holding in sandy soil. J Environ Chemi Eng 9:106760. https://doi.org/10.1016/j.jece.2021.106760

  48. Xu D, Huang Q, Yang L et al (2023) Experimental design of composite films with thermal management and electromagnetic shielding properties based on polyethylene glycol and MXene. Carbon 202:1–12. https://doi.org/10.1016/j.carbon.2022.11.010

    Article  CAS  Google Scholar 

  49. Li W, Zhai D, Gu Y et al (2022) 3D zirconium phosphate/polyvinyl alcohol composite aerogels for form-stable phase change materials with brilliant thermal energy storage capability. Sol Energy Mater Sol Cells 239:111681. https://doi.org/10.1016/j.solmat.2022.111681

  50. Weng M, Su J, Lin J et al (2023) Intrinsically lighting absorptive PANI/MXene aerogel encapsulated PEG to construct PCMs with efficient photothermal energy storage and stable reusability. Sol Energy Mater Sol Cells 254:112282. https://doi.org/10.1016/j.solmat.2023.112282

  51. Wang J, He J, Ma L et al (2020) Multifunctional conductive cellulose fabric with flexibility, superamphiphobicity and flame-retardancy for all-weather wearable smart electronic textiles and high-temperature warning device. Chem Eng J 390:124508. https://doi.org/10.1016/j.cej.2020.124508

  52. Fu T, Zhao X, Chen L et al (2019) Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine. Adv Func Mater 29:1806586. https://doi.org/10.1002/adfm.201806586

    Article  CAS  Google Scholar 

  53. Qi Q, Liu Y, Fang X et al (2013) AIE (AIEE) and mechanofluorochromic performances of TPE-methoxylates: effects of single molecular conformations. RSC Adv 3:7996–8002. https://doi.org/10.1039/C3RA40734A

    Article  CAS  Google Scholar 

  54. Liu S, Cheng Y, Li Y et al (2020) Manipulating solid-state intramolecular motion toward controlled fluorescence patterns. ACS Nano 14:2090–2098. https://doi.org/10.1021/acsnano.9b08761

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (grant nos. 52003111, 21975054, and U20A20340), National Key R&D Program of China (2020YFB0408100), the Program for Guangdong Introducing Innovative and Entrepreneurial Team (2016ZT06C412), and Foshan Science and Technology Innovation Team Project (1920001000108). CR thanks the University of Hull for support.

Author information

Authors and Affiliations

Authors

Contributions

Jintao Huang: methodology, writing—original draft, and conceptualization; Yiwei Liu: data curation and investigation; Jiahui Lin: validation and writing—original draft; Jingtao Su: software; Carl Redshaw: writing—review and editing; Xing Feng: supervision and funding acquisition; Yonggang Min: funding acquisition. Jintao Huang and Yiwei Liu contributed equally to this work.

Corresponding authors

Correspondence to Jintao Huang, Xing Feng or Yonggang Min.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jintao Huang and Yiwei Liu contributed equally to this work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13039 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Liu, Y., Lin, J. et al. Novel pyrene-based aggregation-induced emission luminogen (AIEgen) composite phase change fibers with satisfactory fluorescence anti-counterfeiting, temperature sensing, and high-temperature warning functions for solar-thermal energy storage. Adv Compos Hybrid Mater 6, 126 (2023). https://doi.org/10.1007/s42114-023-00706-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00706-4

Keywords

Navigation