Skip to main content

Advertisement

Log in

Multi-functional and multi-responsive layered double hydroxide-reinforced polyacrylic acid composite hydrogels as ionic skin sensors

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

With the rapid development of artificial intelligence and other fields, flexible devices with various functions and response capabilities have become necessary for human–computer interaction. Hydrogels have a bionic three-dimensional elastic crosslinked aqueous polymer network, making them ideal biocompatible flexible sensing materials. In this study, the conductive composite hydrogels with enhanced mechanical properties, transparency, UV shielding, and adhesion were prepared using the interaction between the alternating ionic layer structure of layered double hydroxide nanosheets and acrylic acid. The conductive composite hydrogels were mechanically sensitive and could monitor human motion, such as finger bending, wrist bending, and swallowing movements, and they could also achieve near-linear and self-powered temperature sensing. Moreover, the strong absorption of UV light led to different degrees of photoelectrochemical reactions in the hydrogels, resulting in the formation of ion concentration differences and spontaneous ion diffusion, thus realizing self-powered UV light detection in only a hydrogel material for the first time. Therefore, the as-prepared multi-functional composite hydrogel ionic skin sensors could sense force, temperature, and UV light, respectively, which is expected to facilitate the development of functionalization and the expansion of application fields of layered double hydroxides and hydrogels.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Han ST, Peng H, Sun Q, Venkatesh S, Chung KS, Lau SC, Zhou Y, Roy VAL (2017) An overview of the development of flexible sensors. Adv Mater 29(33):1700375. https://doi.org/10.1002/adma.201700375

    Article  CAS  Google Scholar 

  2. Yuvaraja S, Nawaz A, Liu Q, Dubal D, Surya SG, Salama KN, Sonar P (2020) Organic field-effect transistor-based flexible sensors. Chem Soc Rev 49(11):3423–3460. https://doi.org/10.1039/c9cs00811j

    Article  CAS  Google Scholar 

  3. Wang Y, Wang L, Zhang X, Liang X, Feng Y, Feng W (2021) Two-dimensional nanomaterials with engineered bandgap: synthesis, properties, applications. Nano Today 37:101059. https://doi.org/10.1016/j.nantod.2020.101059

  4. Liang Y, He J, Guo B (2021) Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 12(5):12687–12722. https://doi.org/10.1021/acsnano.1c04206

    Article  CAS  Google Scholar 

  5. Le X, Lu W, Zhang J, Chen T (2019) Recent progress in biomimetic anisotropic hydrogel actuators. Adv Sci 6(5):1801584. https://doi.org/10.1002/advs.201801584

    Article  CAS  Google Scholar 

  6. Li S, Cong Y, Fu J (2021) Tissue adhesive hydrogel bioelectronics. J Mater Chem B 9(22):4423–4443. https://doi.org/10.1039/d1tb00523e

    Article  CAS  Google Scholar 

  7. Wang Z, Cong Y, Fu J (2020) Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J Mater Chem B 8(16):3437–3459. https://doi.org/10.1039/c9tb02570g

    Article  CAS  Google Scholar 

  8. Liu X, Liu J, Lin S, Zhao X (2020) Hydrogel machines Mater Today 36:102–124. https://doi.org/10.1016/j.mattod.2019.12.026

    Article  CAS  Google Scholar 

  9. Wang L, Xu T, Zhang X (2021) Multifunctional conductive hydrogel-based flexible wearable sensors. Trac-Trends Anal Chem 134:116130. https://doi.org/10.1016/j.trac.2020.116130

  10. Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W (2021) Poly(N-isopropylacrylamide)-based smart hydrogels: design, properties and applications. Prog Mater Sci 115:100702. https://doi.org/10.1016/j.pmatsci.2020.100702

  11. Liu J, Chen E, Wu Y, Yang H, Huang K, Chang G, Pan X, Huang K, He Z, Lei M (2022) Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection. Adv Compos Hybrid Mater 5(2):1196–1205. https://doi.org/10.1007/s42114-022-00472-9

    Article  CAS  Google Scholar 

  12. Zhang Z, Tang L, Chen C, Yu H, Bai H, Wang L, Qin M, Feng Y, Feng W (2021) Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J Mater Chem A 9(2):875–883. https://doi.org/10.1039/d0ta09730f

    Article  CAS  Google Scholar 

  13. Bai H, Zhang Z, Huo Y, Shen Y, Qin M, Feng W (2022) Tetradic double-network physical crosslinking hydrogels with synergistic high stretchable, self-healing, adhesive, and strain-sensitive properties. J Mater Sci Technol 98:169–176. https://doi.org/10.1016/j.jmst.2021.05.020

    Article  Google Scholar 

  14. Liu X, Gao M, Chen J, Guo S, Zhu W, Bai L, Zhai W, Du H, Wu H, Yan C, Shi Y, Gu J, Qi HJ, Zhou K (2022) Recent advances in stimuli-responsive shape-morphing hydrogels. Adv Funct Mater 32(39):2203323. https://doi.org/10.1002/adfm.202203323

    Article  CAS  Google Scholar 

  15. Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832. https://doi.org/10.1038/39834

    Article  CAS  Google Scholar 

  16. Heo YJ, Shibata H, Okitsu T, Kawanishi T, Takeuchi S (2011) Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc Natl Acad Sci U S A 108(33):13399–13403. https://doi.org/10.1073/pnas.1104954108

    Article  Google Scholar 

  17. Kim C-C, Lee H-H, Oh KH, Sun J-Y (2016) Highly stretchable, transparent ionic touch panel. Science 3353(6300):682–687. https://doi.org/10.1126/science.aaf8810

    Article  CAS  Google Scholar 

  18. Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442(7102):551–554. https://doi.org/10.1038/nature05024

    Article  CAS  Google Scholar 

  19. Liu X, Wu Z, Jiang D, Guo N, Wang Y, Ding T, Weng L (2022) A highly stretchable, sensing durability, transparent, and environmentally stable ion conducting hydrogel strain sensor built by interpenetrating Ca2+-SA and glycerol-PVA double physically cross-linked networks. Adv Compos Hybrid Mater 5(3):1712–1729. https://doi.org/10.1007/s42114-021-00396-w

    Article  CAS  Google Scholar 

  20. Kong D, El-Bahy ZM, Algadi H, Li T, El-Bahy SM, Nassan MA, Li J, Faheim AA, Li A, Xu C, Huang M, Cui D, Wei H (2022) Highly sensitive strain sensors with wide operation range from strong MXene-composited polyvinyl alcohol/sodium carboxymethylcellulose double network hydrogel. Adv Compos Hybrid Mater 5(3):1976–1987. https://doi.org/10.1007/s42114-022-00531-1

    Article  CAS  Google Scholar 

  21. Zhang CL, Cao FH, Wang JL, Yu ZL, Ge J, Lu Y, Wang ZH, Yu SH (2017) Highly stimuli-responsive Au nanorods/poly(N-isopropylacrylamide) (PNIPAM) composite hydrogel for smart switch. ACS Appl Mater Interfaces 9(29):24857–24863. https://doi.org/10.1021/acsami.7b05223

    Article  CAS  Google Scholar 

  22. Li X-H, Liu C, Feng S-P, Fang NX (2019) Broadband light management with thermochromic hydrogel microparticles for smart windows. Joule 3(1):290–302. https://doi.org/10.1016/j.joule.2018.10.019

    Article  CAS  Google Scholar 

  23. Unger K, Salzmann P, Masciullo C, Cecchini M, Koller G, Coclite AM (2017) Novel light-responsive biocompatible hydrogels produced by initiated chemical vapor deposition. ACS Appl Mater Interfaces 9(20):17408–17416. https://doi.org/10.1021/acsami.7b01527

    Article  CAS  Google Scholar 

  24. Dai L, Lu J, Kong F, Liu K, Wei H, Si C (2019) Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Adv Compos Hybrid Mater 2(3):462–470. https://doi.org/10.1007/s42114-019-00112-9

    Article  CAS  Google Scholar 

  25. Watanabe T, Akiyama M, Totani K, Kuebler SM, Stellacci F, Wenseleers W, Braun K, Marder SR, Perry JW (2002) Photoresponsive hydrogel microstructure fabricated by two-photon initiated polymerization. Adv Funct Mater 12(9):611–614. https://doi.org/10.1002/1616-3028(20020916)12:9%3c611::AID-ADFM611%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  26. Wu L, Fang H, Zheng C, Wang Q, Wang H (2019) A multifunctional smart window: detecting ultraviolet radiation and regulating the spectrum automatically. J Mater Chem C 7(34):10446–10453. https://doi.org/10.1039/c9tc03398j

    Article  CAS  Google Scholar 

  27. Sumaru K, Ohi K, Takagi T, Kanamori T, Shinbo T (2006) Photoresponsive properties of poly(N-isopropylacrylamide) hydrogel partly modified with spirobenzopyran. Langmuir 22(9):4353–4356. https://doi.org/10.1021/la052899+

    Article  CAS  Google Scholar 

  28. Yang C, Suo Z (2018) Hydrogel ionotronics Nat Rev Mater 3(6):125–142. https://doi.org/10.1038/s41578-018-0018-7

    Article  CAS  Google Scholar 

  29. Zhang Z, Wang L, Yu H, Zhang F, Tang L, Feng Y, Feng W (2020) Highly transparent, self-healable, and adhesive organogels for bio-inspired intelligent ionic skins. ACS Appl Mater Interfaces 12(13):15657–15666. https://doi.org/10.1021/acsami.9b22707

    Article  CAS  Google Scholar 

  30. Kim YA, Jeong JO, Park JS (2021) Preparation and characterization of ionic conductive poly(acrylic acid)-based silicone hydrogels for smart drug delivery system. Polymers-Basel 13(3):406–422. https://doi.org/10.3390/polym13030406

    Article  CAS  Google Scholar 

  31. Lin P, Ma S, Wang X, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27(12):2054–2059. https://doi.org/10.1002/adma.201405022

    Article  CAS  Google Scholar 

  32. Mahfoudhi N, Boufi S (2016) Poly (acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties. Cellulose 23(6):3691–3701. https://doi.org/10.1007/s10570-016-1074-z

    Article  CAS  Google Scholar 

  33. Zhao L, Huang J, Wang T, Sun W, Tong Z (2017) Multiple shape memory, self-healable, and supertough PAA-GO-Fe3+ hydrogel. Macromol Mater Eng 302(2):1600359. https://doi.org/10.1002/mame.201600359

    Article  CAS  Google Scholar 

  34. Dehbari N, Tavakoli J, Singh Khatrao S, Tang Y (2017) In situ polymerized hyperbranched polymer reinforced poly(acrylic acid) hydrogels. Mat Chem Front 1(10):1995–2004. https://doi.org/10.1039/c7qm00028f

    Article  CAS  Google Scholar 

  35. Zhang Y-Z, Lee KH, Anjum DH, Sougrat R, Jiang Q, Kim H, Alshareef HN (2018) MXenes stretch hydrogel sensor performance to new limits. Sci Adv 4(6):eaat0098. https://doi.org/10.1126/sciadv.aat0098

  36. Zhang J, Wan L, Gao Y, Fang X, Lu T, Pan L, Xuan F (2019) Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin. Adv Electron Mater 5(7):1900285. https://doi.org/10.1002/aelm.201900285

    Article  CAS  Google Scholar 

  37. Liao H, Guo X, Wan P, Yu G (2019) Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv Funct Mater 29(39):1904507. https://doi.org/10.1002/adfm.201904507

    Article  CAS  Google Scholar 

  38. Zhang Y, Ruan K, Zhou K, Gu J (2023) Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv Mater e2211642. https://doi.org/10.1002/adma.202211642

  39. Zhao P, Liu Y, Xiao L, Deng H, Du Y, Shi X (2015) Electrochemical deposition to construct a nature inspired multilayer chitosan/layered double hydroxides hybrid gel for stimuli responsive release of protein. J Mater Chem B 3(38):7577–7584. https://doi.org/10.1039/c5tb01056j

    Article  CAS  Google Scholar 

  40. Sebri NJM, Abdul Latip AF, Adnan R, Hussin MH, Kobayashi T (2019) Enhancement of poly(vinyl alcohol) using delaminated layered double hydroxide for the formulation of mechanically strong nanocomposite hydrogel. J Appl Polym Sci 137(18). https://doi.org/10.1002/app.48637

  41. Wang Y, Zhao F, Feng Y, Feng W (2022) Ultrathin layered double hydroxide nanosheets prepared by original precursor method for photoelectrochemical photodetectors. Nano Res 15(10):9392–9401. https://doi.org/10.1007/s12274-022-4778-4

    Article  CAS  Google Scholar 

  42. Tseng YM, Narayanan A, Mishra K, Liu X, Joy A (2021) Light-activated adhesion and debonding of underwater pressure-sensitive adhesives. ACS Appl Mater Interfaces 13(24):29048–29057. https://doi.org/10.1021/acsami.1c04348

    Article  CAS  Google Scholar 

  43. Yang X, Qu L, Gao F, Hu Y, Yu H, Wang Y, Cui M, Zhang Y, Fu Z, Huang Y, Feng W, Li B, Hu P (2022) High-performance broadband photoelectrochemical photodetectors based on ultrathin Bi2O2S nanosheets. ACS Appl Mater Interfaces 14(5):7175–7183. https://doi.org/10.1021/acsami.1c22448

    Article  CAS  Google Scholar 

  44. Mandal L, Chaudhari NS, Ogale S (2013) Self-powered UV-vis photodetector based on ZnIn2S4/hydrogel interface. ACS Appl Mater Interfaces 5(18):9141–9147. https://doi.org/10.1021/am4025356

    Article  CAS  Google Scholar 

  45. Tsai MS, Shen TL, Wu HM, Liao YM, Liao YK, Lee WY, Kuo HC, Lai YC, Chen YF (2020) Self-powered, self-healed, and shape-adaptive ultraviolet photodetectors. ACS Appl Mater Interfaces 12(8):9755–9765. https://doi.org/10.1021/acsami.9b21446

    Article  CAS  Google Scholar 

  46. Li Z, Qiao H, Guo Z, Ren X, Huang Z, Qi X, Dhanabalan SC, Ponraj JS, Zhang D, Li J, Zhao J, Zhong J, Zhang H (2018) High-performance photo-electrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability. Adv Funct Mater 28(16):1705237. https://doi.org/10.1002/adfm.201705237

    Article  CAS  Google Scholar 

  47. Ren X, Li Z, Huang Z, Sang D, Qiao H, Qi X, Li J, Zhong J, Zhang H (2017) Environmentally robust black phosphorus nanosheets in solution: application for self-powered photodetector. Adv Funct Mater 27(18):1606834. https://doi.org/10.1002/adfm.201606834

    Article  CAS  Google Scholar 

  48. Zhang Y, Zhang F, Xu Y, Huang W, Wu L, Zhang Y, Zhang X, Zhang H (2019) Self-healable black phosphorus photodetectors. Adv Funct Mater 29(49):1906610. https://doi.org/10.1002/adfm.201906610

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the State Key Program of the National Natural Science Foundation of China (No. 52130303), National Key R&D Program of China (No. 2016YFA0202302), National Natural Science Foundation of China (Nos. 52103093 and 52173078), and China Postdoctoral Science Foundation (No. 2021M702424).

Author information

Authors and Affiliations

Authors

Contributions

The whole work was done under the supervision and guidance of Wei Feng. Yu Wang designed and completed the experiments, performed data collection and analysis, and wrote the manuscript. Yunfei Yu provided some experimental ideas and help. Fulai Zhao and Yiyu Feng helped to revise the manuscript.

Corresponding author

Correspondence to Wei Feng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8432 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, Y., Zhao, F. et al. Multi-functional and multi-responsive layered double hydroxide-reinforced polyacrylic acid composite hydrogels as ionic skin sensors. Adv Compos Hybrid Mater 6, 65 (2023). https://doi.org/10.1007/s42114-023-00653-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00653-0

Keywords

Navigation