Skip to main content

Advertisement

Log in

Norbornene-based acid–base blended polymer membranes with low ion exchange capacity for proton exchange membrane fuel cell

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In recent decades, the prominence of environmental and energy issues has advanced the use of clean energy. Fuel cell is one of the cleanest and widely used energy conversion device. Proton exchange membrane has functions of proton transfer and electrode isolation in fuel cell. Commercial proton exchange membranes have high cost and other performance problems, requiring new alternatives. In this study, a series of blended membranes were prepared, and the effects of different sulfonated polyimide (SPI) in polynorbornene-3,6-bridged methylene-1,2,3,6-tetrahydro-N-(6'-aminohexyl)-cis-phthalimide (PNBN)/sulfonated polyimide (SPI) acid–base blended membranes to achieve high proton conductivity at low ion exchange capacity (IEC) have been investigated. Under the same experimental conditions, the chemical stability of the blended membranes was compared with pristine PNBN membrane. The results show that the acid–base blending membranes PNBN/SPI showed low IEC of 0.071 to 0.200 mmol/g. And the ion conductivity of the blending membranes was measured at different temperatures and PNBN/SPI-15% can achieve 22.133 mS/cm at 80 ℃. And we found that the ion conductivity of the blended membranes increased with the increase of SPI ratio, which is due to the combined effect of acid–base pair and hydrophilic groups providing ion channels. Moreover, the operation of fuel cells can be achieved at low IEC of 0.200 mmol/g, and the power density of proton exchange membrane fuel cell (PEMFC) assembled with the blended membranes can increase to 104.26 mW cm−2, indicating that the blending membranes are good for PEMFC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balaji J, Sethuraman MG, Roh S-H, Jung H-Y (2020) Recent developments in sol-gel based polymer electrolyte membranes for vanadium redox flow batteries – a review. Polym Testing 89:106567. https://doi.org/10.1016/j.polymertesting.2020.106567

    Article  CAS  Google Scholar 

  2. Wang Z, He S, Nguyen V, Riley KE (2020) Ionic Liquids as “green solvent and/or electrolyte” for energy interface. Eng Sci 11:3–18. https://doi.org/10.30919/es8d0013

  3. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci Technol 126:152–160. https://doi.org/10.1016/j.jmst.2022.03.012

    Article  Google Scholar 

  4. Wang Y, Liu Y, Wang C, Liu H, Zhang J, Lin J, Fan J, Ding T, Ryu JE, Guo Z (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitors. Eng Sci 9:50–59. https://doi.org/10.30919/es8d903

  5. Vinodh R, Atchudan R, Kim H-J, Yi M (2022) Recent Advancements in polysulfone based membranes for fuel cell (PEMFCs, DMFCs and AMFCs) applications: a critical review. Polymers 14:300. https://doi.org/10.3390/polym14020300

    Article  CAS  Google Scholar 

  6. Thiam BG, Vaudreuil S (2021) Review—recent membranes for vanadium redox flow batteries. J Electrochem Soc 168:070553. https://doi.org/10.1149/1945-7111/ac163c

    Article  CAS  Google Scholar 

  7. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384. https://doi.org/10.1016/j.ijhydene.2010.05.017

    Article  CAS  Google Scholar 

  8. Dhanapal D, Xiao M, Wang S, Meng Y (2019) A review on sulfonated polymer composite/organic-inorganic hybrid membranes to address methanol barrier issue for methanol fuel cells. Nanomaterials 9:668. https://doi.org/10.3390/nano9050668

    Article  CAS  Google Scholar 

  9. Cai S, Wang C, Tao Z, Qian J, Zhao X, Li J, Ren Q (2022) Proton exchange membranes containing densely alkyl sulfide sulfonated side chains for vanadium redox flow battery. Int J Hydrogen Energy 47:9319–9330. https://doi.org/10.1016/j.ijhydene.2021.12.263

    Article  CAS  Google Scholar 

  10. Xing Y, Geng K, Chu X, Wang C, Liu L, Li N (2021) Chemically stable anion exchange membranes based on C2-Protected imidazolium cations for vanadium flow battery. J Membr Sci 618:118696. https://doi.org/10.1016/j.memsci.2020.118696

    Article  CAS  Google Scholar 

  11. Cao Y, Weng M, Mahmoud MHH, Elnaggar AY, Zhang L, El Azab IH, Chen Y, Huang M, Huang J, Sheng X (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5:1253–1267. https://doi.org/10.1007/s42114-022-00504-4

    Article  CAS  Google Scholar 

  12. Sun J, Mu Q, Kimura H, Murugadoss V, He M, Du W, Hou C (2022) Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv Compos Hybrid Mater 5:627–640. https://doi.org/10.1007/s42114-022-00435-0

    Article  Google Scholar 

  13. Kim DJ, Jo MJ, Nam SY (2015) A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J Ind Eng Chem 21:36–52. https://doi.org/10.1016/j.jiec.2014.04.030

    Article  CAS  Google Scholar 

  14. Lade H, Kumar V, Arthanareeswaran G, Ismail AF (2017) Sulfonated poly(arylene ether sulfone) nanocomposite electrolyte membrane for fuel cell applications: a review. Int J Hydrogen Energy 42:1063–1074. https://doi.org/10.1016/j.ijhydene.2016.10.038

    Article  CAS  Google Scholar 

  15. Escorihuela J, Olvera-Mancilla J, Alexandrova L, del Castillo LF, Compañ V (2020) Recent Progress in the development of composite membranes based on polybenzimidazole for high temperature proton exchange membrane (PEM) Fuel Cell Applications. Polymers 12:1861. https://doi.org/10.3390/polym12091861

    Article  CAS  Google Scholar 

  16. Chen Y, Lin J, Mersal GAM, Zuo J, Li J, Wang Q, Feng Y, Liu J, Liu Z, Wang B, Xu BB, Guo Z (2022) “Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil. J Mater Sci Technol 128:82–97. https://doi.org/10.1016/j.jmst.2022.05.002

    Article  Google Scholar 

  17. Feng Y, Li Y, Ye X, Li Z, Wang W, Liu T, Azab IHE, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Synthesis and characterization of 2,5-furandicarboxylic acid poly(butanediol sebacate-butanediol) terephthalate (PBSeT) segment copolyesters with excellent water vapor barrier and good mechanical properties. J Mater Sci 57:10997–11012. https://doi.org/10.1007/s10853-022-07269-7

    Article  CAS  Google Scholar 

  18. Alashkar A, Al-Othman A, Tawalbeh M, Qasim M (2022) A critical review on the use of ionic liquids in proton exchange membrane fuel cells. Membranes 12:178. https://doi.org/10.3390/membranes12020178

    Article  CAS  Google Scholar 

  19. Hazarika M, Jana T (2013) Novel proton exchange membrane for fuel cell developed from blends of polybenzimidazole with fluorinated polymer. Eur Polymer J 49:1564–1576. https://doi.org/10.1016/j.eurpolymj.2013.01.028

    Article  CAS  Google Scholar 

  20. Zhao Y, Liu F, Zhu K, Maganti S, Zhao Z, Bai P (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 5:1537–1547. https://doi.org/10.1007/s42114-022-00430-5

    Article  CAS  Google Scholar 

  21. Guo J, Chen Z, El-Bahy ZM, Liu H, Abo-Dief HM, Abdul W, Abualnaja KM, Alanazi AK, Zhang P, Huang M, Hu G, Zhu J (2022) Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater 5:899–906. https://doi.org/10.1007/s42114-022-00485-4

    Article  CAS  Google Scholar 

  22. Cai J, Murugadoss V, Jiang J, Gao X, Lin Z, Huang M, Guo J, Alsareii SA, Algadi H, Kathiresan M (2022) Waterborne polyurethane and its nanocomposites: a mini-review for anti-corrosion coating, flame retardancy, and biomedical applications. Adv Compos Hybrid Mater 5:641–650. https://doi.org/10.1007/s42114-022-00473-8

    Article  CAS  Google Scholar 

  23. Awang N, Ismail AF, Jaafar J, Matsuura T, Junoh H, Othman MHD, Rahman MA (2015) Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell: a review. React Funct Polym 86:248–258. https://doi.org/10.1016/j.reactfunctpolym.2014.09.019

    Article  CAS  Google Scholar 

  24. Rambabu G, Bhat SD, Figueiredo FML (2019) Carbon nanocomposite membrane electrolytes for direct methanol fuel cells—a concise review. Nanomaterials 9:1292. https://doi.org/10.3390/nano9091292

    Article  CAS  Google Scholar 

  25. Jing C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–122. https://doi.org/10.1016/j.partic.2021.11.013

    Article  CAS  Google Scholar 

  26. He L (2021) Improve thermal conductivity of polymer composites via conductive network. ES Mater Manuf 13:1–2. https://doi.org/10.30919/esmm5f460

  27. Zuber M, Corda JV, Souza AD (2022) Formaldehyde Concentration in an anatomical dissection room with three different ventilation configurations using computational fluid dynamics. Eng Sci 18:177–186. https://doi.org/10.30919/es8d674

  28. Nagarale RK, Shin W, Singh PK (2010) Progress in ionic organic-inorganic composite membranes for fuelcell applications. Polym Chem 1:388–408. https://doi.org/10.1039/B9PY00235A

    Article  CAS  Google Scholar 

  29. Jin Y, Wang T, Che X, Dong J, Liu R, Yang J (2022) New high-performance bulky N-heterocyclic group functionalized poly(terphenyl piperidinium) membranes for HT-PEMFC applications. J Membr Sci 641:119884. https://doi.org/10.1016/j.memsci.2021.119884

    Article  CAS  Google Scholar 

  30. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Bin Xu B, Murugadoss V, Naik N, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:1–19. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  31. Yu Z, Yan Z, Zhang F, Wang J, Shao Q, Murugadoss V, Alhadhrami A, Mersal GAM, Ibrahim MM, El-Bahy ZM, Li Y, Huang M, Guo Z (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875. https://doi.org/10.1016/j.porgcoat.2022.106875

    Article  CAS  Google Scholar 

  32. Zhang Y, Zheng J, Nan J, Gai C, Shao Q, Murugadoss V, Maganti S, Naik N, Algadi H, Huang M, Xu B, Guo Z (2022) Influence of mass ratio and calcination temperature on the physical and photoelectrochemical properties of ZnFe-layered double oxide/cobalt oxide heterojunction semiconductor for dye degradation applications. Particuology 74:141–155

    Article  Google Scholar 

  33. Zhao Z, Zhao R, Bai P, Du W, Guan R, Tie D, Naik N, Huang M, Guo Z (2022) AZ91 alloy nanocomposites reinforced with Mg-coated graphene: Phases distribution, interfacial microstructure, and property analysis. J Alloy Compd 902:163484. https://doi.org/10.1016/j.jallcom.2021.163484

    Article  CAS  Google Scholar 

  34. Liu L, Wang C, He Z, Pan D, Dong B, Vupputuri S, Guo Z (2021) Revisiting Nafion membranes by introducing ammoniated polymer with norbornene to improve fuel cell performance. J Power Sources 506:230164. https://doi.org/10.1016/j.jpowsour.2021.230164

    Article  CAS  Google Scholar 

  35. Yan X, Zhang S, Tang W, Xia M (2020) Thermal conductivity of PBX compound calculated by phonons of explosive and binder molecular crystals. ES Energ Environ 11:74–83. https://doi.org/10.30919/esee8c1036

  36. Khan MI, Shanableh A, Shahida S, Lashari MH, Manzoor S, Fernandez J (2022) SPEEK and SPPO blended membranes for proton exchange membrane fuel cells. Membranes 12:263. https://doi.org/10.3390/membranes12030263

    Article  CAS  Google Scholar 

  37. Li X, Zhao Y, Wang S, Xie X (2016) Molecular dynamics simulation study of a polynorbornene-based polymer: A prediction of proton exchange membrane design and performance. Int J Hydrogen Energy 41:16254–16263. https://doi.org/10.1016/j.ijhydene.2016.05.254

    Article  CAS  Google Scholar 

  38. Chen W, Mandal M, Huang G, Wu X, He G, Kohl PA (2019) Highly conducting anion-exchange membranes based on cross-linked poly(norbornene): ring opening metathesis polymerization. ACS Appl Energy Mater 2:2458–2468. https://doi.org/10.1021/acsaem.8b02052

    Article  CAS  Google Scholar 

  39. Kovačič S, Kren H, Krajnc P, Koller S, Slugovc C (2013) The Use of an emulsion templated microcellular poly(dicyclopentadiene-co-norbornene) membrane as a separator in lithium-ion batteries. Macromol Rapid Commun 34:581–587. https://doi.org/10.1002/marc.201200754

    Article  CAS  Google Scholar 

  40. Wang X, Wilson TJ, Alentiev D, Gringolts M, Finkelshtein E, Bermeshev M, Long BK (2021) Substituted polynorbornene membranes: a modular template for targeted gas separations. Polym Chem 12:2947–2977. https://doi.org/10.1039/D1PY00278C

    Article  CAS  Google Scholar 

  41. Vargas J, Martínez A, Santiago AA, Tlenkopatchev MA, Gaviño R, Aguilar-Vega M (2009) The effect of fluorine atoms on gas transport properties of new polynorbornene dicarboximides. J Fluorine Chem 130:162–168. https://doi.org/10.1016/j.jfluchem.2008.09.011

    Article  CAS  Google Scholar 

  42. Sun D, Yan J, Ma X, Lan M, Wang Z, Cui S, Yang J (2021) Tribological investigation of self-healing composites containing metal/polymer microcapsules. ES Mater Manuf 14:59–72. https://doi.org/10.30919/esmm5f469

  43. Wang C, Mo B, He Z, Shao Q, Pan D, Wujick E, Guo J, Xie X, Xie X, Guo Z (2018) Crosslinked norbornene copolymer anion exchange membrane for fuel cells. J Membr Sci 556:118–125. https://doi.org/10.1016/j.memsci.2018.03.080

    Article  CAS  Google Scholar 

  44. Wang C, Feng Z, Zhao Y, Li X, Li W, Xie X, Wang S, Hou H (2017) Preparation and properties of ion exchange membranes for PEMFC with sulfonic and carboxylic acid groups based on polynorbornenes. Int J Hydrogen Energy 42:29988–29994. https://doi.org/10.1016/j.ijhydene.2017.09.168

    Article  CAS  Google Scholar 

  45. Liu L, Wang C, He Z, Liu H, Hu Q, Naik N, Guo Z (2021) Bi-functional side chain architecture tuned amphoteric ion exchange membranes for high-performance vanadium redox flow batteries. J Membr Sci 624:119118. https://doi.org/10.1016/j.memsci.2021.119118

    Article  CAS  Google Scholar 

  46. Yang J, Tong L, Alsubaie AS, Mahmoud KH, Guo Y, Liu L, Guo L, Sun Z, Wang C (2022) Hybrid proton exchange membrane used in fuel cell with amino-functionalized metal–organic framework in sulfonated polyimide to construct efficient ion transport channel. Adv Compos Hybrid Mater 5:834–842. https://doi.org/10.1007/s42114-022-00469-4

    Article  CAS  Google Scholar 

  47. Zhang B, Ni J, Xiang X, Wang L, Chen Y (2017) Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes. J Power Sources 337:110–117. https://doi.org/10.1016/j.jpowsour.2016.10.102

    Article  CAS  Google Scholar 

  48. Pan H, Chen S, Zhang Y, Jin M, Chang Z, Pu H (2015) Preparation and properties of the cross-linked sulfonated polyimide containing benzimidazole as electrolyte membranes in fuel cells. J Membr Sci 476:87–94. https://doi.org/10.1016/j.memsci.2014.11.023

    Article  CAS  Google Scholar 

  49. Zhang M, Wang G, Li A, Wei X, Li F, Zhang J, Chen J, Wang R (2021) Novel sulfonated polyimide membrane blended with flexible poly[bis(4-methylphenoxy) phosphazene] chains for all vanadium redox flow battery. J Membr Sci 619:118800. https://doi.org/10.1016/j.memsci.2020.118800

    Article  CAS  Google Scholar 

  50. Zhao Y, Zhang D, Zhao L, Wang S, Liu J, Yan C (2021) Excellent ion selectivity of Nafion membrane modified by PBI via acid-base pair effect for vanadium flow battery. Electrochim Acta 394:139144. https://doi.org/10.1016/j.electacta.2021.139144

    Article  CAS  Google Scholar 

  51. Zhang Y, Wang H, Qian P, Zhang L, Zhou Y, Shi H (2021) Hybrid proton exchange membrane of sulfonated poly(ether ether ketone) containing polydopamine-coated carbon nanotubes loaded phosphotungstic acid for vanadium redox flow battery. J Membr Sci 625:119159. https://doi.org/10.1016/j.memsci.2021.119159

    Article  CAS  Google Scholar 

  52. Xu J, Dong S, Li P, Li W, Tian F, Wang J, Cheng Q, Yue Z, Yang H (2021) Novel ether-free sulfonated poly(biphenyl) tethered with tertiary amine groups as highly stable amphoteric ionic exchange membranes for vanadium redox flow battery. Chem Eng J 424:130314. https://doi.org/10.1016/j.cej.2021.130314

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R & D Program of China (Project No. 2021YFE0104700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Shen, R., Hu, S. et al. Norbornene-based acid–base blended polymer membranes with low ion exchange capacity for proton exchange membrane fuel cell. Adv Compos Hybrid Mater 5, 2131–2137 (2022). https://doi.org/10.1007/s42114-022-00559-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00559-3

Keywords

Navigation