Skip to main content

Advertisement

Log in

Synthesis of CoSe2/Mxene composites using as high-performance anode materials for lithium-ion batteries

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Currently, the energy densities of commercial lithium-ion batteries (LIBs) are getting closer and closer to their fundamental limit, and novel anode materials are urgent to be explored to meet the increasing requirements. CoSe2 has a high theoretical specific capacity of 494.4 mAh g−1 and is expected to be a viable anode material for high-power LIBs. However, its actual specific capacity degrades rapidly during the cycling process, while the MXene Ti3C2Tx possesses excellent cycle stability but low specific capacity (about 110 mAh g−1). In this study, novel CoSe2/Ti3C2Tx composites with high specific capacity and good stability were successfully prepared by growing CoSe2 particles in situ on Ti3C2Tx via hydrothermal method. The results showed that after 1000 charge–discharge cycles at a current density of 0.3 A g−1, CoSe2/Ti3C2Tx (with a molar ratio of 1:2) composite still has a high reversible capacity of 210.8 mAh g−1. Excellent rate capability and electrochemical kinetic behavior are also achieved. This study indicates that CoSe2/Ti3C2Tx composites have a promising application prospect in LIBs as an anode material.

Graphical abstract

A novel CoSe2/Ti3C2Tx composite with high specific capacity and excellent cycling stability is successfully prepared by growing CoSe2 particle on MXene Ti3C2Tx that is derived from the corrosion of Ti3AlC2 by hydrofluoric acid. After 1000 charge–discharge cycles at 0.3 A g−1, CoSe2/Ti3C2Tx composite still possesses a higher reversible capacity of 210.8 mAh g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ding FC, Hu H, Ding H, Li JJ, Chen Y, Xiao M, Meng YZ, Sun LY (2020) Sulfonated poly(fluorene ether ketone) (SPFEK)/α-zirconium phosphate (ZrP) nanocomposite membranes for fuel cell applications. Adv Compos Hybrid Mater 3:546–550

    Article  CAS  Google Scholar 

  2. Zeng XY, Luo Q, Li JY, Li YL, Wang W, Li YH, Wu RG, Pan D, Song G, Li JB, Guo ZH, Wang N (2021) A multifunctional pentlandite counter electrode toward efficient and stable sensitized solar cells. Adv Compos Hybrid Mater 4:392–400

    Article  CAS  Google Scholar 

  3. Xiao LD, Qi HJ, Qu KQ, Shi C, Cheng Y, Sun Z, Yuan BN, Huang ZH, Pan D, Guo ZH (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4:306–316

    Article  CAS  Google Scholar 

  4. Ali Baig AB, Rathinam V, Ramya V (2021) Facile fabrication of Zn-doped SnO2 nanoparticles for enhanced photocatalytic dye degradation performance under visible light exposure. Adv Compos Hybrid Mater 4:114–126

    Article  CAS  Google Scholar 

  5. Hu H, Ding FC, Ding H, Liu JJ, Xiao M, Meng YZ, Sun LY (2020) Sulfonated poly (fluorenyl ether ketone)/sulfonated α-zirconium phosphate nanocomposite membranes for proton exchange membrane fuel cells. Adv Compos Hybrid Mater 3:498–507

    Article  CAS  Google Scholar 

  6. Jain B, Hashmi A, Sanwaria S, Singh AK, Susan MABH, Singh A (2020) Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process. Adv Compos Hybrid Mater 3:231–242

    Article  CAS  Google Scholar 

  7. Babu MJ, Botsa SM, Rani SJ, Venkateswararao B, Muralikrishna R (2020) Enhanced photocatalytic degradation of cationic dyes under visible light irradiation by CuWO4-RGO nanocomposite. Adv Compos Hybrid Mater 3:205–212

    Article  Google Scholar 

  8. Melchior SA, Palaniyandy N, Sigalas I, Iyuke SE, Ozoemena KI (2019) Probing the electrochemistry of MXene (Ti2CTx)/electrolytic manganese dioxide (EMD) composites as anode materials for lithium-ion batteries. Electrochim Acta 297:961–973

    Article  CAS  Google Scholar 

  9. Hou CX, Wang B, Murugadoss V, Vupputuri S, Chao YF, Guo ZH, Wang CY, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30

    CAS  Google Scholar 

  10. Wang YZ, Liu YX, Wang C, Liu H, Zhang JX, Lin J, Fan JC, Ding T, Guo RGE, ZH, (2020) Significantly enhanced ultrathin NiCo-based MOF nanosheet electrodes hybrided with Ti3C2Tx MXene for high performance asymmetric supercapacitor. Eng Sci 9:50–59

    Google Scholar 

  11. Ma YP, Xie XB, Yang WY, Yu ZP, Sun XQ, Zhang YP, Yang XY, Kimura H, Hou CX, Guo ZH, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4:906–924

    Article  CAS  Google Scholar 

  12. Rehman SU, Ahmed R, Ma K, Xu S, Tao TX, Aslam MA, Amir M, Wang JF (2020) Composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci 13:71–78

    Google Scholar 

  13. Patil SS, Bhat TS, Teli AM, Beknalkar SA, Dhavale SB, Faras MM, Karanjkar MM, Patil PS (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51

    CAS  Google Scholar 

  14. Eames C, Islam MS (2014) Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J Am Chem Soc 136:16270–16276

    Article  CAS  Google Scholar 

  15. Xie J, Lu YC (2020) A retrospective on lithium-ion batteries. Nat Commun 11:2499

    Article  CAS  Google Scholar 

  16. Li L, Zhang D, Deng JP, Gou YC, Fang JF, Cui H, Zhao YQ, Cao MH (2021) Carbon-based materials for fast charging lithium-ion batteries. Carbon 183:721–734

    Article  CAS  Google Scholar 

  17. Zhang YX, Wu B, Mu G, Ma CW, Mu DB, Wu F (2022) Recent progress and perspectives on silicon anode: synthesis and prelithiation for LIBs energy storage. J Energy Chem 64:615–650

    Article  CAS  Google Scholar 

  18. Li RJ, Liang GS, Zhu XZ, Fu QF, Chen YJ, Luo LJ, Lin CF (2021) Mo3Nb14O44: a new Li+ container for high-performance electrochemical energy storage. Energy Environ Mater 4:65–71

    Article  CAS  Google Scholar 

  19. Fu QF, Zhu XZ, Li RJ, Liang GS, Luo LJ, Chen YJ, Ding YL, Lin CH, Wang KK, Zhao XS (2020) A low-strain V3Nb17O50 anode compound for superior Li+ storage. Energy Stor Mater 30:401–411

    Article  Google Scholar 

  20. Yang LT, Liang GS, Cao HJ, Ma SY, Liu XH, Li X, Chen GY, You WB, Lin CF, Che RC (2022) A new sodium calcium cyclotetravanadate framework: “zero-strain” during large-capacity lithium intercalation. Adv Funct Mater 32:2105026

    Article  CAS  Google Scholar 

  21. Ma SY, Jiang T, Deng JB, Zhang Q, Ou YJ, Liu XH, Lin CF, Wang KK, Zhao XS (2022) VPO5: an all-climate lithium-storage material. Energy Stor Mater 46:366–373

    Article  Google Scholar 

  22. Long ZW, Yuan LH, Shi C, Wu CQ, Qiao H, Wang KL (2022) Porous Fe2O3 nanorod-decorated hollow carbon nanofibers for high-rate lithium storage. Adv Compos Hybrid Mater 5:370–382

    Article  CAS  Google Scholar 

  23. Lv CP, Lin CH, Zhao XS (2021) Rational design and synthesis of nickel niobium oxide with high-rate capability and cycling stability in a wide temperature range. Adv Energy Mater 12:2102550

    Article  Google Scholar 

  24. Huang JP, Chen Q, Chen SH, Luo LJ, Li JB, Lin CH, Chen YJ (2021) Al3+-doped FeNb11O29 anode materials with enhanced lithium-storage performance. Adv Compos Hybrid Mater 4:733–742

    Article  CAS  Google Scholar 

  25. Yang J, Gao HC, Men S, Shi ZQ, Lin Z, Kang XW, Chen SW (2018) CoSe2 nanoparticles encapsulated by n-doped carbon framework intertwined with carbon nanotubes:high-performance dual-role anode materials for both li- and na-ion batteries. Adv Sci 5:1800763

    Article  Google Scholar 

  26. Zhou JD, Lin JH, Huang XW, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu HM, Lei JC, Wu D, Liu FC, Fu QD, Zeng QS, Hsu CH, Yang CL, Lu L, Yu T, Shen ZX, Lin H, Yakobson BI, Liu Q, Suenaga K, Liu GT, Liu Z (2018) A library of atomically thin metal chalcogenides. Nature 556:355–359

    Article  CAS  Google Scholar 

  27. Zhang SP, Wang G, Jin J, Zhang LL, Wen ZY, Yang JH (2018) Robust and conductive red MoSe2 for stable and fast lithium storage. ACS Nano 12:4010–4018

    Article  CAS  Google Scholar 

  28. Yang L, Hong WW, Tian Y, Zou GQ, Hou HS, Sun W, Ji XB (2020) Heteroatom-doped carbon inlaid with Sb2X3 (X= S, Se) nanodots for high-performance potassium-ion batteries. Chem Eng J 385:123838

    Article  CAS  Google Scholar 

  29. Etogo CA, Huang HW, Hong H, Liu GX, Zhang L (2020) Metal-organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater 24:167–176

    Article  Google Scholar 

  30. Zhang K, Park MH, Zhou LM, Lee GH, Li WJ, Kang YM, Chen J (2016) Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv Funct Mater 26:6728–6735

    Article  CAS  Google Scholar 

  31. Yu QY, Jiang B, Hu J, Lao CY, Gao YZ, Li PH, Liu ZW, Suo GQ, He DL, Wang W, Yin GP (2018) Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes:a flexible framework for high-performance potassium-ion batteries. Adv Sci 5:1800782

    Article  Google Scholar 

  32. Yin H, Qu HQ, Liu ZT, Jiang RZ, Li C, Zhu MQ (2019) Long cycle life and high rate capability of three dimensional CoSe2 grain-attached carbon nanofibers for flexible sodium-ion batteries. Nano Energy 58:715–723

    Article  CAS  Google Scholar 

  33. Zhao S, Jin RX, Abroshan H, Zeng CJ, Zhang H, House SD, Gottlieb E, Kim HJ, Yang JC, Jin RC (2017) Gold nanoclusters promote electrocatalytic water oxidation at the nanocluster/CoSe2 interface. J Am Chem Soc 139:1077–1080

    Article  CAS  Google Scholar 

  34. Li ZY, Zhang LY, Zhang L, Huang JM, Liu HD (2019) ZIF-67-derived CoSe/NC composites as anode materials for lithium-ion batteries. Nanoscale Res Lett 14:358

    Article  Google Scholar 

  35. Li JB, Yan D, Lu T, Yao YF, Pan LK (2017) An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem Eng J 325:14–24

    Article  CAS  Google Scholar 

  36. Zhou Y, Tian R, Duan H, Wang KF, Guo YP, Li H, Liu HZ (2018) CoSe/Co nanoparticles wrapped by in situ grown N-doped graphitic carbon nanosheets as anode material for advanced lithium ion batteries. J Power Sources 399:223–230

    Article  CAS  Google Scholar 

  37. Lu WZ, Xue MZ, Chen XL, Chen C (2017) CoSe2 nanoparticlesas anode for lithium ion battery. Int J Electrochem Sci 12:1118–1129

    Article  CAS  Google Scholar 

  38. Park SK, Kim JK, Kang YC (2017) Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem Eng J 328:546–555

    Article  CAS  Google Scholar 

  39. Cui LF, Qi HY, Wang NN, Gao X, Song CY, Yang JH, Wang G, Kang SF, Chen XD (2022) N/S co-doped CoSe/C nanocubes as anode materials for Li-ion batteries. Nanotechnol Rev 11:244–251

    Article  CAS  Google Scholar 

  40. Zhou JS, Wang Y, Zhang J, Chen TP, Song HH, Yang HY (2016) Two dimensional layered Co0.85Se nanosheets as a high-capacity anode for lithium-ion batteries. Nanoscale 8:14992–15000

    Article  CAS  Google Scholar 

  41. Ding W, Wang S, Wu XZ, Wang YS, Li YY, Zhou PF, Zhuo T, Zhuo J, Zhuo SP (2020) Co0.85Se@C/Ti3C2Tx MXene hybrids as anode materials for lithium-ion batteries. J Alloys Compd 816:152566

    Article  CAS  Google Scholar 

  42. Pomerantseva E, Bonaccorso F, Feng XL, Cui Y, Gogotsi Y (2019) Energy storage: the future enabled by nanomaterials. Science 366:8285

    Article  Google Scholar 

  43. Li RJ, Lin CF, Wang N, Luo LJ, Chen YJ, Li JB, Guo ZH (2018) Advanced composites of complex Ti-based oxides as anode materials for lithium-ion batteries. Adv Compos Hybrid Mater 1:440–459

    Article  CAS  Google Scholar 

  44. Sun JF, Mu Q, Kimura H, Murugadoss V, He MX, Du W, Hou CX (2022) Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Adv Compos Hybrid Mater

  45. Wu XH, Chen ZX, Wu F (2021) Strong nonreciprocal radiation in a InAs film by critical coupling with a dielectric grating. ES Energy Environ 13:8–12

    CAS  Google Scholar 

  46. Li J, Tang XG, Liu QX, Jiang YP, Li WH (2021) Enhancement of the photoelectric properties of composite oxide TiO2-SrTiO3 thin films. Adv Compos Hybrid Mater

  47. Cheng HR, Pan YM, Chen Q, Che RC, Zheng GQ, Liu CT, Shen CY, Liu XH (2021) Ultrathin flexible poly (vinylidene fluoride)/MXene/silver nanowire film with outstanding specific EMI shielding and high heat dissipation. Adv Compos Hybrid Mater 4:505–513

    Article  CAS  Google Scholar 

  48. Yan H, Dai XJ, Ruan KP, Zhang SJ, Shi XT, Guo YQ, Cai HQ, Gu JW (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 4:36–50

    Article  CAS  Google Scholar 

  49. Mishra S, Chaudhary P, Yadav BC, Umar A, Lohia P, Dwivedi DK (2021) Fabrication and characterization of an ultrasensitive humidity sensor based on chalcogenide glassy alloy thin films. Eng Sci 15:138–147

    CAS  Google Scholar 

  50. Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253

    Article  CAS  Google Scholar 

  51. Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098

    Article  CAS  Google Scholar 

  52. Pu LY, Zhang JX, Jiresse NKL, Gao YF, Zhou HJ, Naik N, Gao P, Guo ZH (2022) N-doped MXene derived from chitosan for the highly effective electrochemical properties as supercapacitor. Adv Compos Hybrid Mater 5:356–369

    Article  CAS  Google Scholar 

  53. Nan JX, Guo X, Xiao J, Li X, Chen WH, Wu WJ, Liu H, Wang Y, Wu MH, Wang GX (2021) Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17:1902085

    Article  CAS  Google Scholar 

  54. Chen NJ, Yang WQ, Zhang CF (2021) Perspectives on preparation of two-dimensional MXenes. Sci Technol Adv Mater 22:917–930

    Article  Google Scholar 

  55. Guo Y, Wang DD, Bai TT, Liu H, Zheng YJ, Liu CT, Shen CY (2021) Electrostatic self-assembled NiFe2O4/Ti3C2Tx MXene nanocomposites for efficient electromagnetic wave absorption at ultralow loading level. Adv Compos Hybrid Mater 4:602–613

    Article  CAS  Google Scholar 

  56. Srivastava P, Mishra A, Mizuseki H, Lee KR, Singh AK (2016) Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl Mater Interfaces 8:24256–24264

    Article  CAS  Google Scholar 

  57. Firouzjaei MD, Karimiziarani M, Moradkhani H, Elliott M, Anasori B (2022) MXenes: the two-dimensional influencers. Mater Today Adv 13:100202

    Article  Google Scholar 

  58. Gogotsi Y, Anasori B (2019) The rise of MXenes. ACS Nano 13:8491–8494

    Article  CAS  Google Scholar 

  59. Iqbal A, Shahzad F, Hantanasirisakul K, Kim MK, Kwon J, Hong J, Kim D, Gogotsi Y, Koo CM (2020) Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369:446–450

    Article  CAS  Google Scholar 

  60. Gao QS, Pan YM, Zheng GQ, Liu CT, Shen CY, Liu XH (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4:274–285

    Article  CAS  Google Scholar 

  61. Zhang K, Li DQ, Cao HY, Zhu QH, Trapalis C, Zhu PF, Gao XH, Wang CY (2021) Insights into different dimensional MXenes for photocatalysis. Chem Eng J 424:130340

    Article  CAS  Google Scholar 

  62. Pei YY, Zhang XL, Hui ZY, Zhou JY, Huang X, Sun GZ, Huang W (2021) Ti3C2TX MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano 15:3996–4017

    Article  CAS  Google Scholar 

  63. Tian Y, An YL, Feng JK (2019) Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 11:10004–10011

    Article  CAS  Google Scholar 

  64. Zhong SL, Ju SL, Shao YF, Chen W, Zhang TF, Huang YQ, Zhang HY, Xia GL, Yu XB (2021) Magnesium hydride nanoparticles anchored on MXene sheets as high capacity anode for lithium-ion batteries. J Energy Chem 62:431–439

    Article  CAS  Google Scholar 

  65. Wei YD, Luo WL, Zhuang Z, Dai B, Ding JX, Li TX, Ma ML, Yin XQ, Ma Y (2021) Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv Compos Hybrid Mater 4:1082–1091

    Article  CAS  Google Scholar 

  66. Er D, Li JW, Naguib M, Gogotsi Y, Shenoy VB (2014) Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces 6:11173–11179

    Article  CAS  Google Scholar 

  67. Fan YP, Chen DD, Liu XY, Fan GX, Liu BZ (2019) Improving the hydrogen storage performance of lithium borohydride by Ti3C2 MXene. Int J Hydrogen Energy 44:29297–29303

    Article  CAS  Google Scholar 

  68. Luo JM, Tao XY, Zhang J, Xia Y, Huang H, Zhang LY, Gan YP, Liang C, Zhang WK (2016) Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 10:2491–2499

    Article  CAS  Google Scholar 

  69. Wu NN, Zhao BB, Liu JY, Li YL, Chen YB, Chen L, Wang M, Guo ZH (2021) MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Hybrid Mater 4:707–715

    Article  CAS  Google Scholar 

  70. Zhai YJ, Yang WY, Xie XB, Sun XQ, Wang J, Yang XY, Naik N, Kimura H, Du W, Guo ZH, Hou CX (2022) Co3O4 nanoparticle-dotted hierarchical-assembled carbon nanosheet framework catalysts with the formation/decomposition mechanisms of Li2O2 for smart lithium-oxygen batteries. Inorg Chem Front 9:1115–1124

    Article  CAS  Google Scholar 

  71. Yan J, Ren CE, Maleski K, Hatter CB, Anasori B, Urbankowski P, Gogotsi Y (2017) Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 27:1701264

    Article  Google Scholar 

  72. Lu CX, Li AR, Li GZ, Yan Y, Zhang MY, Yang QL, Zhou W, Guo L (2021) S-decorated porous Ti3C2 MXene combined with In situ forming Cu2Se as effective shuttling interrupter in Na-Se batteries. Adv Mater 33:2008414

    Article  CAS  Google Scholar 

  73. Ahmed B, Anjum DH, Hedhili MN, Gogotsi Y, Alshareef HN (2016) H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 8:7580–7587

    Article  CAS  Google Scholar 

  74. Yuan H, Jiao QZ, Liu J, Liu XF, Li YJ, Shi DX, Wu Q, Zhao Y, Li HS (2017) Facile synthesis of Co0. 85Se nanotubes/reduced graphene oxide nanocomposite as Pt-free counter electrode with enhanced electrocatalytic performance in dye-sensitized solar cells. Carbon 122:381–388

    Article  CAS  Google Scholar 

  75. Zhang GJ, Liu KH, Liu ST, Song HH, Zhou JS (2018) Flexible Co0.85Se nanosheets/graphene composite film as binder-free anode with high Li-and Na-Ion storage performance. J Alloys Compd 731:714–722

    Article  CAS  Google Scholar 

  76. Zhang LJ, Xia GL, Guo ZP, Li XG, Sun DL, Yu XB (2016) Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries. Int J Hydrogen Energy 41:14252–14260

    Article  CAS  Google Scholar 

  77. Liu MC, Zhang BM, Zhang YS, Hu YX (2021) Diacid molecules welding achieved self-adaption layered structure Ti3C2 MXene toward fast and stable lithium-ion storage. ACS Sustainable Chem Eng 9:12930–12939

    Article  CAS  Google Scholar 

  78. Li L, Jiang GX, An CH, Xie ZJ, Wang YJ, Jiao LF, Yuan HT (2020) Hierarchical Ti3C2@TiO2 MXene hybrids with tunable interlayer distance for highly durable lithium-ion batteries. Nanoscale 12:10369–10379

    Article  CAS  Google Scholar 

Download references

Funding

The work is supported by the Natural Science Foundation of Hainan Province (No. 518MS021) and High Level Talents Project of Basic and Applied Basic Research Plan of Hainan Province (in Natural Science) (No. 2019RC029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijie Luo or Yongjun Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Li, J., Chen, Q. et al. Synthesis of CoSe2/Mxene composites using as high-performance anode materials for lithium-ion batteries. Adv Compos Hybrid Mater 5, 2977–2987 (2022). https://doi.org/10.1007/s42114-022-00524-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00524-0

Keywords

Navigation