Skip to main content

Advertisement

Log in

Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Phase change materials (PCMs) are ideal for thermal management in miniaturized and integrated electronic devices. However, developing PCMs with efficient thermal management and electromagnetic interference (EMI) shielding has remained a challenge to keep up with the rapid evolution of precision electronics. Herein, melamine foam (MF) was used as a template to build a continuous thermal/conductive network by dip-coating magnetized nickel (Ni)/MXene (NiM), and then, polyethylene glycol (PEG) was encapsulated into porous NiM/MF hybrid sponge via vacuum impregnation method. With the synergistic effect of magnetic Ni chain and highly conductive MXene, the obtained NiM/PCM achieve suitable thermal conductivity (0.39 W/mk), high electrical conductivity (76.3 S/m), and excellent EMI shielding effectiveness (34.6 dB). In addition, the NiM/PCM endows outstanding thermal stability, durability, and high latent heat storage capabilities. This work provides new ideas and insights for the EMI shielding and temperature protection of future microelectronic devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu H (2020) Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system. Compos Pt B-Eng 195:108094

    Article  CAS  Google Scholar 

  2. Shi Y, Wang C, Yin Y, Li Y, Xing Y, Song J (2019) Functional soft composites as thermal protecting substrates for wearable electronics. Adv Funct Mater 29(45):1905470

    Article  CAS  Google Scholar 

  3. Cui Y, Qin Z, Wu H, Li M, Hu Y (2021) Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat Commun 12(1):1–7

    Article  CAS  Google Scholar 

  4. Zhou Y, Wu S, Ma Y, Zhang H, Zeng X, Wu F, Liu F, Ryu JE, Guo Z (2020) Recent advances in organic/composite phase change materials for energy storage. ES Energy Environ 9:28–40

    CAS  Google Scholar 

  5. Yang J, Li X, Han S, Yang R, Min P, Yu Z (2018) High-quality graphene aerogels for thermally conductive phase change composites with excellent shape stability. J Mater Chem A 6(14):5880–5886

    Article  CAS  Google Scholar 

  6. Min P, Liu J, Li X, An F, Liu P, Shen Y, Koratkar N, Yu ZZ (2018) Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv Funct Mater 28(51):1805365

    Article  CAS  Google Scholar 

  7. Huang J, Luo Y, Weng M, Yu J, Sun L, Zeng H, Liu Y, Zeng W, Min Y, Guo Z (2021) Advances and applications of phase change materials (PCMs) and PCMs-based technologies. ES Mater Manuf 13:23–39

    CAS  Google Scholar 

  8. Lu X, Zheng Y, Yang J, Qu J (2020) Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices. Compos Pt B-Eng 199:108308

    Article  CAS  Google Scholar 

  9. Yang J, Zhang E, Li X, Zhang Y, Qu J, Yu Z (2016) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57

    Article  CAS  Google Scholar 

  10. An J, Yang EH, Duan F, Xiang Y, Yang J (2022) Synthesis and characterization of robust SiO2-phase change materials (PCM) microcapsules. ES Mater Manuf 15:34–45

    CAS  Google Scholar 

  11. Hu X, Wu H, Lu X, Liu S, Qu J (2021) Improving thermal conductivity of ethylene propylene diene monomer/paraffin/expanded graphite shape-stabilized phase change materials with great thermal management potential via green steam explosion. Adv Compos Hybrid Mater 4(3):478–491

    Article  CAS  Google Scholar 

  12. Yuan K, Shi J, Aftab W, Qin M, Usman A, Zhou F, Lv Y, Gao S, Zou R (2020) Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization. Adv Funct Mater 30(8):1904228

    Article  CAS  Google Scholar 

  13. Ling Z, Chen J, Xu T, Fang X, Gao X, Zhang Z (2015) Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Conv Manag 102:202–208

    Article  CAS  Google Scholar 

  14. Lin Y, Jia Y, Alva G, Fang G (2018) Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sust Energ Rev 82:2730–2742

    Article  CAS  Google Scholar 

  15. Xie Y, Yang Y, Liu Y, Wang S, Guo X, Wang H, Cao D (2021) Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv Compos Hybrid Mater 4(3):543–551

    Article  CAS  Google Scholar 

  16. Wu H, Deng S, Shao Y, Yang J, Qi X, Wang Y (2019) Multiresponsive shape-adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal energy storage and utilization. ACS Appl Mater Interfaces 11(50):46851–46863

    Article  CAS  Google Scholar 

  17. Sheng X, Dong D, Lu X, Zhang L, Chen Y (2020) Mxene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. Compos Pt A-Appl Sci Manuf 138:106067

    Article  CAS  Google Scholar 

  18. Liu H, Fu R, Su X, Wu B, Wang H, Xu Y, Liu X (2021) Mxene confined in shape-stabilized phase change material combining enhanced electromagnetic interference shielding and thermal management capability. Compos Sci Technol 210:108835

    Article  CAS  Google Scholar 

  19. Parvate S, Singh J, Dixit P, Vennapusa JR, Maiti TK, Chattopadhyay S (2021) Titanium dioxide nanoparticle-decorated polymer microcapsules enclosing phase change material for thermal energy storage and photocatalysis. ACS Appl Polym Mater 3(4):1866–1879

    Article  CAS  Google Scholar 

  20. Gong S, Ding Y, Li X, Liu S, Wu H, Lu X, Qu J (2021) Novel flexible polyurethane/mxene composites with sensitive solar thermal energy storage behavior. Compos Pt A-Appl Sci Manuf 149:106505

    Article  CAS  Google Scholar 

  21. Wang B, Li G, Xu L, Liao J, Zhang X (2020) Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano 14(12):16590–16599

    Article  CAS  Google Scholar 

  22. Wu M, Li T, Wang P, Wu S, Wang R, Lin J (2021) Dual-encapsulated highly conductive and liquid-free phase change composites enabled by polyurethane/graphite nanoplatelets hybrid networks for efficient energy storage and thermal management. Small 2105647.

  23. Li X, Sheng M, Gong S, Wu H, Chen X, Lu X, Qu J (2021) Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for use in electronic devices. Chem. Eng. J 132928.

  24. Pan D, Yang G, Abo-Dief HM, Dong J, Su F, Liu C, Li Y, Xu BB, Murugadoss V, Naik N, EI-Bahy Z M, Huang M, Guo Z, (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14:118

    Article  CAS  Google Scholar 

  25. Zhao B, Wang R, Li Y, Ren Y, Li X, Guo X, Zhang R, Park CB (2020) Dependence of electromagnetic interference shielding ability of conductive polymer composite foams with hydrophobic properties on cellular structure. J Mater Chem C 8(22):7401–7410

    Article  CAS  Google Scholar 

  26. Che R, Peng L, Duan X, Chen Q, Liang X (2004) Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv Mater 16(5):401–405

    Article  CAS  Google Scholar 

  27. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  28. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4(3):534–542

    Article  CAS  Google Scholar 

  29. Xie P, Zhang Z, Wang Z, Sun K, Fan R (2019) Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019:1021368

    Article  CAS  Google Scholar 

  30. Cao M, Cai Y, He P, Shu J, Cao W, Yuan J (2019) 2D mxenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem Eng J 359:1265–1302

    Article  CAS  Google Scholar 

  31. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Man Hong S, Koo CM, Gogotsi Y (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353:6304

    Article  CAS  Google Scholar 

  32. Liu J, Zhang H, Sun R, Liu Y, Liu Z, Zhou A, Yu Z (2017) Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic interference shielding. Adv Mater 29:38

    Article  Google Scholar 

  33. Cheng H, Pan Y, Wang X, Liu C, Shen C, Schubert DW, Guo Z, Liu X (2022) Ni flower/mxene-melamine foam derived 3d magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett 14(1):1–16

    CAS  Google Scholar 

  34. Liu S, Sheng M, Wu H, Shi X, Lu X, Qu J (2022) biological porous carbon encapsulated polyethylene glycol-based phase change composites for integrated electromagnetic interference shielding and thermal management capabilities. J Mater Sci Technol 113:147–157

    Article  Google Scholar 

  35. Zhao B, Wang S, Zhao C, Li R, Hamidinejad SM, Kazemi Y, Park CB (2018) Synergism between carbon materials and Ni chains in flexible poly (vinylidene fluoride) composite films with high heat dissipation to improve electromagnetic shielding properties. Carbon 127:469–478

    Article  CAS  Google Scholar 

  36. Xu Y, Yang Y, Yan D-X, Duan H, Zhao G, Liu Y (2018) Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl Mater Interfaces 10(22):19143–19152

    Article  CAS  Google Scholar 

  37. Liang C, Gu Z, Zhang Y, Ma Z, Qiu H, Gu J (2021) Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett 13(1):1–29

    Article  CAS  Google Scholar 

  38. Wang T, Kong W-W, Yu W-C, Gao J-F, Dai K, Yan D-X, Li Z-M (2021) A healable and mechanically enhanced composite with segregated conductive network structure for high-efficient electromagnetic interference shielding. Nano-Micro Lett 13(1):1–14

    Article  CAS  Google Scholar 

  39. Zhao B, Zhao C, Hamidinejad M, Wang C, Li R, Wang S, Yasamin K, Park CB (2018) Incorporating a microcellular structure into pvdf/graphene–nanoplatelet composites to tune their electrical conductivity and electromagnetic interference shielding properties. J Mater Chem C 6(38):10292–10300

    Article  CAS  Google Scholar 

  40. Zhao B, Deng J, Zhao C, Wang C, Chen YG, Hamidinejad M, Li R, Park CB (2020) Achieving wideband microwave absorption properties in pvdf nanocomposite foams with an ultra-low mwcnt content by introducing a microcellular structure. J Mater Chem C 8(1):58–70

    Article  CAS  Google Scholar 

  41. Cheng H, Lu Z, Gao Q, Zuo Y, Liu X, Guo Z, Liu C, Shen C (2021) Pvdf-ni/pe-cnts composite foams with co-continuous structure for electromagnetic interference shielding and photo-electro-thermal properties. Eng Sci 16:331–340

    CAS  Google Scholar 

  42. Shi H, Zhao H-B, Liu B-W, Wang Y (2021) Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. ACS Appl Mater Interfaces 13(22):26505–26514

    Article  CAS  Google Scholar 

  43. Fu B, Ren P, Guo Z, Du Y, Jin Y, Sun Z, Dai Z, Ren F (2021) Construction of three-dimensional interconnected graphene nanosheet network in thermoplastic polyurethane with highly efficient electromagnetic interference shielding. Compos Pt B-Eng 215:108813

    Article  CAS  Google Scholar 

  44. Deng B, Liu Z, Pan F, Xiang Z, Zhang X, Lu W (2021) Electrostatically self-assembled two-dimensional magnetized mxene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J Mater Chem A 9(6):3500–3510

    Article  CAS  Google Scholar 

  45. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mat 29(18):7633–7644

    Article  CAS  Google Scholar 

  46. Liang L, Yang R, Han G, Feng Y, Zhao B, Zhang R, Wang Y, Liu C (2019) Enhanced electromagnetic wave-absorbing performance of magnetic nanoparticles-anchored 2D Ti3C2Tx MXene. ACS Appl Mater Interfaces 12(2):2644–2654

    Article  CAS  Google Scholar 

  47. Liang L, Yao C, Yan X, Feng Y, Hao X, Zhou B, Wang Y, Ma J, Liu C, Shen C (2021) High-efficiency electromagnetic interference shielding capability of magnetic Ti3C2Tx MXene/CNT composite film. J Mater Chem A 9(43):24560–24570

    Article  CAS  Google Scholar 

  48. Zhou Y, Liu X, Sheng D, Lin C, Ji F, Dong L, Xu S, Wu H, Yang Y (2018) Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage. Chem Eng J 338:117–125

    Article  CAS  Google Scholar 

  49. Xue F, Lu Y, Qi X, Yang J, Wang Y (2019) Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities. Chem Eng J 365:20–29

    Article  CAS  Google Scholar 

  50. Chen X, Cheng P, Tang Z, Xu X, Gao H, Wang G (2021) Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv Sci 8(9):2001274

    Article  CAS  Google Scholar 

  51. Allahbakhsh A, Arjmand M (2019) Graphene-based phase change composites for energy harvesting and storage: State of the art and future prospects. Carbon 148:441–480

    Article  CAS  Google Scholar 

  52. Mishra AK, Lahiri B, Philip J (2019) Superior thermal conductivity and photo-thermal conversion efficiency of carbon black loaded organic phase change material. J Mol Liq 285:640–657

    Article  CAS  Google Scholar 

  53. Li X, Sheng X, Guo Y, Lu X, Wu H, Chen Y, Zhang L, Gu J (2021) Multifunctional hdpe/cnts/pw composite phase change materials with excellent thermal and electrical conductivities. J Mater Sci Technol 86:171–179

    Article  CAS  Google Scholar 

  54. Yang J, Qi G, Bao R, Yi K, Li M, Peng L, Cai Z, Yang M, Wei D, Yang W (2018) Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater 13:88–95

    Article  Google Scholar 

  55. Wu H, Chen R, Shao Y, Qi X, Yang J, Wang Y (2019) Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability. ACS Sustain Chem Eng 7(15):13532–13542

    Article  CAS  Google Scholar 

  56. Duan H, Zhu H, Gao J, Yan D, Dai K, Yang Y, Zhao G, Liu Y, Li Z (2020) Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. J Mater Chem A 8(18):9146–9159

    Article  CAS  Google Scholar 

  57. Guo J, Li X, Liu H, Young DP, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4(1):51–64

    Article  CAS  Google Scholar 

  58. Li E, Pan Y, Wang C, Liu C, Shen C, Pan C, Liu X (2021) Asymmetric superhydrophobic textiles for electromagnetic interference shielding, photothermal conversion, and solar water evaporation. ACS Appl Mater Interfaces 13(24):28996–29007

    Article  CAS  Google Scholar 

  59. Li H, Lu X, Yuan D, Sun J, Erden F, Wang F, He C (2017) Lightweight flexible carbon nanotube/polyaniline films with outstanding emi shielding properties. J Mater Chem C 5(34):8694–8698

    Article  CAS  Google Scholar 

  60. Cheng H, Wei S, Ji Y, Zhai J, Zhang X, Chen J, Shen C (2019) Synergetic effect of fe3o4 nanoparticles and carbon on flexible poly (vinylidence fluoride) based films with higher heat dissipation to improve electromagnetic shielding. Compos Pt A-Appl Sci Manuf 121:139–148

    Article  CAS  Google Scholar 

  61. Cheng H, Pan Y, Chen Q, Che R, Zheng G, Liu C, Shen C, Liu X (2021) Ultrathin flexible poly (vinylidene fluoride)/mxene/silver nanowire film with outstanding specific emi shielding and high heat dissipation. Adv Compos Hybrid Mater 4(3):505–513

    Article  CAS  Google Scholar 

  62. Li E, Pan Y, Wang C, Liu C, Shen C, Pan C, Liu X (2021) Multifunctional and superhydrophobic cellulose composite paper for electromagnetic shielding, hydraulic triboelectric nanogenerator and joule heating applications. Chem Eng J 420:129864

    Article  CAS  Google Scholar 

  63. Zhao B, Park CB (2017) Tunable electromagnetic shielding properties of conductive poly (vinylidene fluoride)/ni chain composite films with negative permittivity. J Mater Chem C 5(28):6954–6961

    Article  CAS  Google Scholar 

  64. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N, Sui K, Patil RR, Pan D, Guo Z (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater 4(1):173–185

    Article  CAS  Google Scholar 

  65. Gao Q, Pan Y, Zheng G, Liu C, Shen C, Liu X (2021) Flexible multilayered mxene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Mater 4(2):274–285

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by the National Natural Science Foundation of China (51803190), 111 project (D18023) and National Key R&D Program of China (2019YFA0706802), and Taif University Researchers Supporting Project (TURSP-2020/47).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yamin Pan or Xianhu Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 857 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Xing, L., Zuo, Y. et al. Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv Compos Hybrid Mater 5, 755–765 (2022). https://doi.org/10.1007/s42114-022-00487-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00487-2

Keywords

Navigation