Skip to main content
Log in

Polyaniline improves granulation and stability of aerobic granular sludge

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The polyaniline (PANI) material was used to enhance the formation process of aerobic granular sludge (AGS) in this study. The effect of PANI on the granulation and stability of sludge was investigated as well as the bacterial community of the formed AGS. The results showed that the PANI with the positively charged surface has a positive effect on microbial aggregation. The PANI added during the start-up period increased the retention of biomass, accelerating the granulation process of AGS. In addition, the PANI increased the pores and channels in AGS, favoring the long-term stability of the granules. It was also found that the PANI stimulated the cells to secrete polysaccharides, which facilitates to maintain the stability of AGS. The pollutants removal performance of the obtained AGS was investigated as well. Finally, the effect of the added PANI on bacterial communities in AGS was also assessed by high-throughput sequencing techniques.

Graphical abstract

PANI material significantly improves the formation and maintains the stability of aerobic granular sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Geng M, You S, Guo H, Ma F, Xiao X, Zhang J (2021) Impact of fungal pellets dosage on long-term stability of aerobic granular sludge. Bioresour Technol 332:125106

  2. Cai F, Lei L, Li Y, Chen Y (2021) A review of aerobic granular sludge (AGS) treating recalcitrant wastewater: refractory organics removal mechanism, application and prospect. Sci Total Environ 782:146852

  3. de Sousa Rollemberg SL, Mendes Barros AR, Milen Firmino PI, Bezerra dos Santos A (2018) Aerobic granular sludge: cultivation parameters and removal mechanisms. Bioresour Technol 270:678–688

    Article  CAS  Google Scholar 

  4. Iorhemen OT, Liu Y (2021) Effect of feeding strategy and organic loading rate on the formation and stability of aerobic granular sludge. J Water Process Eng 39:101709

  5. Purba LDA, Ibiyeye HT, Yuzir A, Mohamad SE, Iwamoto K, Zamyadi A, Abdullah N (2020) Various applications of aerobic granular sludge: a review. Environ Technol Innovation 20:101045

  6. Adav SS, Lee D-J, Show K-Y, Tay J-H (2008) Aerobic granular sludge: recent advances. Biotechnol Adv 26(5):411–423

    Article  CAS  Google Scholar 

  7. Bengtsson S, de Blois M, Wilén BM, Gustavsson D (2019) A comparison of aerobic granular sludge with conventional and compact biological treatment technologies. Environ Technol 40(21):2769–2778

    Article  CAS  Google Scholar 

  8. Pronk M, de Kreuk MK, de Bruin B, Kamminga P, Kleerebezem R, van Loosdrecht MCM (2015) Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res 84:207–217

    Article  CAS  Google Scholar 

  9. Pronk M, Giesen A, Thompson A, Robertson S, van Loosdrecht M (2017) Aerobic granular biomass technology: advancements in design, applications and further developments. Water Pract Technol 12(4):987–996

    Article  Google Scholar 

  10. Derlon N, Wagner J, da Costa RHR, Morgenroth E (2016) Formation of aerobic granules for the treatment of real and low-strength municipal wastewater using a sequencing batch reactor operated at constant volume. Water Res 105:341–350

    Article  CAS  Google Scholar 

  11. Luiz de Sousa Rollemberg S, Queiroz de Oliveira L, Nascimento de Barros A, Igor Milen Firmino P, Bezerra dos Santos A (2020) Pilot-scale aerobic granular sludge in the treatment of municipal wastewater: optimizations in the start-up, methodology of sludge discharge, and evaluation of resource recovery. Bioresour Technol 311:123467

  12. Lin H, Ma R, Hu Y, Lin J, Sun S, Jiang J, Li T, Liao Q, Luo J (2020) Reviewing bottlenecks in aerobic granular sludge technology: slow granulation and low granular stability. Environ Pollut 263:114638

  13. da Costa N, Libardi N, Schambeck CM, Filho PB, da Costa RHR (2020) Impact of additive application on the establishment of fast and stable aerobic granulation. Appl Microbiol Biotechnol 104(13):5697–5709

    Article  CAS  Google Scholar 

  14. Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22(4):699–734

    Article  CAS  Google Scholar 

  15. Kong Q, Ngo HH, Shu L, Fu R-S, Jiang C-H, Miao M-S (2014) Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor. J Hazard Mater 279:511–517

    Article  CAS  Google Scholar 

  16. Liang X-Y, Gao B-Y, Ni S-Q (2017) Effects of magnetic nanoparticles on aerobic granulation process. Bioresour Technol 227:44–49

    Article  CAS  Google Scholar 

  17. Lin H, Ma R, Lin J, Sun S, Liu X, Zhang P (2020) Positive effects of zeolite powder on aerobic granulation: nitrogen and phosphorus removal and insights into the interaction mechanisms. Environ Res 191:110098

  18. Li S, Yang C, Sarwar S, Nautiyal A, Zhang P, Du H, Liu N, Yin J, Deng K, Zhang X (2019) Facile synthesis of nanostructured polyaniline in ionic liquids for high solubility and enhanced electrochemical properties. Adv Compos Hybrid Mater 2(2):279–288

    Article  CAS  Google Scholar 

  19. Li S, Jasim A, Zhao W, Fu L, Ullah MW, Shi Z, Yang G (2018) Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater Manuf 1:41–49

    Google Scholar 

  20. Wei Y, Luo W, Zhuang Z, Dai B, Ding J, Li T, Ma M, Yin X, Ma Y (2021) Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv Compos Hybrid Mater 4:1082–1091

    Article  CAS  Google Scholar 

  21. Zhuang Z, Wang W, Wei Y, Li T, Ma M, Ma Y (2021) Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv Compos Hybrid Mater 4:938–945

    Article  CAS  Google Scholar 

  22. Zare EN, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G (2020) Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review. J Med Chem 63(1):1–22

    Article  CAS  Google Scholar 

  23. Guo J, Li X, Liu H, Young DP, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Compos Hybrid Mater 4:51–64

    Article  CAS  Google Scholar 

  24. Gu H, Zhang H, Gao C, Liang C, Gu J, Guo Z (2018) New functions of polyaniline. ES Mater Manuf 1:3–12

    Google Scholar 

  25. Wang X, Zeng X, Cao D (2018) Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/ polyaniline composites as high performance supercapacitor materials. Eng Sci 1:55–63

    Google Scholar 

  26. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Mater 4:534–542

    Article  CAS  Google Scholar 

  27. Hu Q, Sun D, Ma Y, Qiu B, Guo Z (2017) Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment. Polymer 120:236–243

    Article  CAS  Google Scholar 

  28. Zhou J, Huang W, Qiu B, Hu Q, Cheng X, Guo Z (2021) Core-shell structured polyaniline/polypyrrole composites promoted methane production from anaerobic sludge. Chemosphere 132296

  29. Ingle RV, Shaikh SF, Pankaj KÂ, Bhujbal Pankaj KÂ, Pathan HM, Tabhane VA (2020) Polyaniline doped with protonic acids: optical and morphological studies. ES Mater Manuf 8:54–59

    CAS  Google Scholar 

  30. Apha A (1998) Standard methods for the examination of water and wastewater, 20. American Public Health Association, Washington, DC

    Google Scholar 

  31. Ren X, Chen Y, Guo L, She Z, Gao M, Zhao Y, Shao M (2018) The influence of Fe2+, Fe3+ and magnet powder (Fe3O4) on aerobic granulation and their mechanisms. Ecotoxicol Environ Saf 164:1–11

    Article  CAS  Google Scholar 

  32. Adav SS, Lee D-J (2008) Extraction of extracellular polymeric substances from aerobic granule with compact interior structure. J Hazard Mater 154(1):1120–1126

    Article  CAS  Google Scholar 

  33. Guo L, Lu M, Li Q, Zhang J, Zong Y, She Z (2014) Three-dimensional fluorescence excitation–emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria. Bioresour Technol 171:22–28

    Article  CAS  Google Scholar 

  34. Li Z, Kuba T, Kusuda T (2007) Effect of rotifers on the stability of aerobic granules. Environ Technol 28:235–242

    Article  CAS  Google Scholar 

  35. McSwain BS, Irvine RL, Hausner M, Wilderer PA (2005) Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol 71(2):1051–1057

    Article  CAS  Google Scholar 

  36. Liu YQ, Zhang X, Zhang R, Liu WT, Tay JH (2016) Effects of hydraulic retention time on aerobic granulation and granule growth kinetics at steady state with a fast start-up strategy. Appl Microbiol Biotechnol 100(1):469–477

    Article  CAS  Google Scholar 

  37. Liao Y-T, Wang Y, Ouyang L-F, Dong Y, Zhou J, Hu Q, Qiu B. Conductive polyaniline enhanced decolorization of azo dyes in anaerobic wastewater treatment. ES Food Agrofor 2021;6

  38. Tay J-H, Liu Q-S, Liu Y (2001) Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor. J Appl Microbiol 91(1):168–175

    Article  CAS  Google Scholar 

  39. Zheng Y-M, Yu H-Q (2007) Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography. Water Res 41(1):39–46

    Article  CAS  Google Scholar 

  40. Tay J-H, Ivanov V, Pan S, Tay ST-L (2002) Specific layers in aerobically grown microbial granules. Lett Appl Microbiol 34(4):254–257

    Article  CAS  Google Scholar 

  41. Hao W, Li Y, Lv J, Chen L, Zhu J (2016) The biological effect of metal ions on the granulation of aerobic granular activated sludge. J Environ Sci 44:252–259

    Article  CAS  Google Scholar 

  42. Wang Z-W, Liu Y, Tay J-H (2005) Distribution of EPS and cell surface hydrophobicity in aerobic granules. Appl Microbiol Biotechnol 69(4):469–473

    Article  CAS  Google Scholar 

  43. Lee D-J, Chen Y-Y, Show K-Y, Whiteley CG, Tay J-H (2010) Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol Adv 28(6):919–934

    Article  CAS  Google Scholar 

  44. Shi Y, Liu Y (2021) Evolution of extracellular polymeric substances (EPS) in aerobic sludge granulation: Composition, adherence and viscoelastic properties. Chemosphere 262:128033

  45. Liu Y-Q, Liu Y, Tay J-H (2004) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65(2):143–148

    Article  CAS  Google Scholar 

  46. Sheng G-P, Yu H-Q, Li X-Y (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28(6):882–894

    Article  CAS  Google Scholar 

  47. Lin H, Sun S, Lin Z, Chen M, Fang L, Ma R, Lin J, Luo J (2021) Bio-carrier–enhanced aerobic granulation: effects on the extracellular polymeric substances production and microorganism community. Chemosphere 280:130756

  48. Luo J, Hao T, Wei L, Mackey HR, Lin Z, Chen G-H (2014) Impact of influent COD/N ratio on disintegration of aerobic granular sludge. Water Res 62:127–135

    Article  CAS  Google Scholar 

  49. Al-Halbouni D, Traber J, Lyko S, Wintgens T, Melin T, Tacke D, Janot A, Dott W, Hollender J (2008) Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena. Water Res 42(6):1475–1488

    Article  CAS  Google Scholar 

  50. Wu D, Zhang Z, Yu Z, Zhu L (2018) Optimization of F/M ratio for stability of aerobic granular process via quantitative sludge discharge. Bioresour Technol 252:150–156

    Article  CAS  Google Scholar 

  51. Li D, Yang J, Li Y, Zhang J (2021) Research on rapid cultivation of aerobic granular sludge (AGS) with different feast-famine strategies in continuous flow reactor and achieving high-level denitrification via utilization of soluble microbial product (SMP). Sci Total Environ 786:147237

  52. Yuan C, Peng Y, Wang B, Li X, Zhang Q (2020) Facilitating sludge granulation and favoring glycogen accumulating organisms by increased salinity in an anaerobic/micro-aerobic simultaneous partial nitrification, denitrification and phosphorus removal (SPNDPR) process. Bioresour Technol 313:123698

  53. Liu Y, Wei D, Xu W, Feng R, Du B, Wei Q (2019) Nitrogen removal in a combined aerobic granular sludge and solid-phase biological denitrification system: system evaluation and community structure. Bioresour Technol 288:121504

  54. Fang D, Zhao G, Xu X, Zhang Q, Shen Q, Fang Z, Huang L, Ji F (2018) Microbial community structures and functions of wastewater treatment systems in plateau and cold regions. Bioresour Technol 249:684–693

    Article  CAS  Google Scholar 

  55. Miura Y, Watanabe Y, Okabe S (2007) Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater. Environ Sci Technol 41(22):7787–7794

    Article  CAS  Google Scholar 

  56. Zhi X-Y, Li W-J, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59(3):589–608

    Article  CAS  Google Scholar 

  57. Zhou J, Sun Q (2020) Performance and microbial characterization of aerobic granular sludge in a sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal with varying C/N ratios. Bioprocess Biosyst Eng 43(4):663–672

    Article  CAS  Google Scholar 

  58. Yan L, Zhang M, Liu Y, Liu C, Zhang Y, Liu S, Yu L, Hao G, Chen Z, Zhang Y (2019) Enhanced nitrogen removal in an aerobic granular sequencing batch reactor under low DO concentration: role of extracellular polymeric substances and microbial community structure. Bioresour Technol 289:121651

  59. Yu Z, Zhang Y, Zhang Z, Dong J, Fu J, Xu X, Zhu L (2020) Enhancement of PPCPs removal by shaped microbial community of aerobic granular sludge under condition of low C/N ratio influent. J Hazard Mater 394:122583

  60. Wang S, Liu Z, Wang W, You H (2017) Fate and transformation of nanoparticles (NPs) in municipal wastewater treatment systems and effects of NPs on the biological treatment of wastewater: a review. RSC Adv 7(59):37065–37075

    Article  CAS  Google Scholar 

  61. Carta F, Beun JJ, van Loosdrecht MCM, Heijnen JJ (2001) Simultaneous storage and degradation of phb and glycogen in activated sludge cultures. Water Res 35(11):2693–2701

    Article  CAS  Google Scholar 

  62. Yuan Q, Gong H, Xi H, Xu H, Jin Z, Ali N, Wang K (2019) Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate. J Environ Sci 84:144–154

    Article  Google Scholar 

  63. Liu Y, Yang SF, Tay JH (2004) Improved stability of aerobic granules by selecting slow-growing nitrifying bacteria. J Biotechnol 108(2):161–169

    Article  CAS  Google Scholar 

  64. de Kreuk MK, van Loosdrecht MCM (2004) Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci Technol 49(11–12):9–17

    Article  Google Scholar 

Download references

Funding

This work is supported by the Fundamental Research Funds for the Central Universities (2021ZY77) and the Innovative Transdisciplinary Program “Ecological Environment of Urban and Rural Human Settlements” (GJJXK210105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3256 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, L., Huang, W., Huang, M. et al. Polyaniline improves granulation and stability of aerobic granular sludge. Adv Compos Hybrid Mater 5, 1126–1136 (2022). https://doi.org/10.1007/s42114-022-00450-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00450-1

Keywords

Navigation