Skip to main content
Log in

Construction of Ni-based alloys decorated sucrose-derived carbon hybrid towards: effective microwave absorption application

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

High efficiency and broad bandwidth wave absorption materials are urgent need in daily life for human health. Carbon material (graphene, etc.) is widely used in electromagnetic wave (EMW) absorption field for light weight, high surface area, and excellent electrical conductivity. However, the immoderate conductivity of the carbon will also cause the impedance mismatch and need more consideration. We have synthesized sucrose-derived carbon-based hybrid absorbers, and a series of Ni-based alloys (Ni, Fe–Ni, Co–Ni) are decorated on the surface of the carbon. Consequently, the Ni/C composite shows a maximum attenuation constant, and an ultra-broad wide effective bandwidth of 6.24 GHz with an optimal reflection loss (RL) value of − 20.5 dB located at thickness of only 1.7 mm. The Co–Ni/C composite has an improved impedance matching level, and shows the optimal RL of − 34.3 dB located at a thickness of 3.3 mm with an effective bandwidth of 4.24 GHz. The Fe–Ni/C composite shows an optimal RL among all the samples of − 42.3 dB located at a thickness of 5.7 mm with the effective bandwidth of 2.8 GHz. The Ni-based alloys decorated sucrose-derived carbon hybrid can be a proper candidate for microwave absorption as its light-weight outstanding EMW absorption property.

Graphical abstract

The Ni-based alloys decorated sucrose-derived carbon hybrid for microwave absorption

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang L, Guan Y, Qiu X, Zhu H, Pan S, Yu M, Zhang Q (2017) Efficient ferrite/Co/porous carbon microwave absorbing material based on ferrite@metal–organic framework. Chem Eng J 326:945–955. https://doi.org/10.1016/j.cej.2017.06.006

    Article  CAS  Google Scholar 

  2. Sang G, Xu P, Yan T, Murugadoss V, Naik N, Ding Y et al (2021) Interface engineered microcellular magnetic conductive polyurethane nanocomposite foams for electromagnetic interference shielding. Micro Nano Lett 13(1):153. https://doi.org/10.1007/s40820-021-00677-5

    Article  CAS  Google Scholar 

  3. Ma G, Yang M, Xiao S, Yang Z, Sheng P (2014) Acoustic metasurface with hybrid resonances. Nat Mater 13(9):873–878. https://doi.org/10.1038/nmat3994

    Article  CAS  Google Scholar 

  4. Chen J, Zheng J, Huang Q, Wang F, Ji G (2021) Enhanced Microwave Absorbing Ability of Carbon Fibers with Embedded FeCo/CoFe2O4 Nanoparticles. ACS Appl Mater Interfaces 13(30):36182–36189. https://doi.org/10.1021/acsami.1c09430

    Article  CAS  Google Scholar 

  5. Chen H, Huang Z, Huang Y, Zhang Y, Ge Z, Qin B et al (2017) Synergistically assembled MWCNT/graphene foam with highly efficient microwave absorption in both C and X bands. Carbon 124:506–514. https://doi.org/10.1016/j.carbon.2017.09.007

    Article  CAS  Google Scholar 

  6. Zhang Y, Huang Y, Chen H, Huang Z, Yang Y, Xiao P et al (2016) Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105:438–447. https://doi.org/10.1016/j.carbon.2016.04.070

    Article  CAS  Google Scholar 

  7. Li G, Xie T, Yang S, Jin J, Jiang J (2012) Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. J Phys Chem C 116(16):9196–9201. https://doi.org/10.1021/jp300050u

    Article  CAS  Google Scholar 

  8. Qi X, Yang Y, Zhong W, Deng Y, Au C, Du Y (2009) Large-scale synthesis, characterization and microwave absorption properties of carbon nanotubes of different helicities. J Solid State Chem 182(10):2691–2697. https://doi.org/10.1016/j.jssc.2009.07.036

    Article  CAS  Google Scholar 

  9. Gonzalez M, Crespo M, Baselga J, Pozuelo J (2016) Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range. Nanoscale 8(20):10724–10730. https://doi.org/10.1039/c6nr02133f

    Article  CAS  Google Scholar 

  10. Zhao T, Hou C, Zhang H, Zhu R, She S, Wang J et al (2014) Electromagnetic wave absor-bing properties of amorphous carbon nanotubes. Sci Rep 4:5619. https://doi.org/10.1038/srep05619

    Article  CAS  Google Scholar 

  11. Li J, Xie Y, Lu W, Chou T-W (2018) Flexible electromagnetic wave absorbing composite ba-sed on 3D rGO-CNT-Fe3O4 ternary films. Carbon 129:76–84. https://doi.org/10.1016/j.carbon.2017.11.094

    Article  CAS  Google Scholar 

  12. Munir A (2017) Microwave Radar Absorbing Properties of Multiwalled Carbon Nanotubes Polymer Composites: A Review. Adv Polym Technol 36(3):362–370. https://doi.org/10.1002/adv.21617

    Article  CAS  Google Scholar 

  13. Meng F, Wang H, Huang F, Guo Y, Wang Z, Hui D et al (2018) Graphene-based microwave absorbing composites: a review and prospective. Compos B Eng 137:260–277. https://doi.org/10.1016/j.compositesb.2017.11.023

    Article  CAS  Google Scholar 

  14. Lu S, Xia L, Xu J, Ding C, Li T, Yang H et al (2019) Permittivity-regulating strategy enabling superior electromagnetic wave absorption of lithium aluminum silicate/rGO nanocomposites. ACS Appl Mater Interfaces 11(20):18626–18636. https://doi.org/10.1021/acsami.9b00348

    Article  CAS  Google Scholar 

  15. Feng J, Pu F, Li Z, Li X, Hu X, Bai J (2016) Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104:214–225. https://doi.org/10.1016/j.carbon.2016.04.006

    Article  CAS  Google Scholar 

  16. Xu W, Wang G-S, Yin P-G (2018) Designed fabrication of reduced graphene oxides/Ni hybrids for effective electromagnetic absorption and shielding. Carbon 139:759–767. https://doi.org/10.1016/j.carbon.2018.07.044

    Article  CAS  Google Scholar 

  17. Liu Q, Liu X, Feng H, Shui H, Yu R (2017) Metal organic framework-derived Fe/carbon p-orous composite with low Fe content for lightweight and highly efficient electromagn-etic wave absorber. Chem Eng J 314:320–327. https://doi.org/10.1016/j.cej.2016.11.089

    Article  CAS  Google Scholar 

  18. Ma E, Li J, Zhao N, Liu E, He C, Shi C (2013) Preparation of reduced graphene oxide/Fe3O4 nanocomposite and its microwave electromagnetic properties. Mater Lett 91:209–212. https://doi.org/10.1016/j.matlet.2012.09.097

    Article  CAS  Google Scholar 

  19. Wu N, Xu D, Wang Z, Wang F, Liu J, Liu W et al (2019) Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon 145:433–444. https://doi.org/10.1016/j.carbon.2019.01.028

    Article  CAS  Google Scholar 

  20. Yue L, Zhong B, Xia L, Zhang T, Yu Y, Huang X (2021) Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption. J Colloid Interface Sci 582:177–186. https://doi.org/10.1016/j.jcis.2020.08.024

    Article  CAS  Google Scholar 

  21. Du Y, Liu T, Yu B, Gao H, Xu P, Wang J et al (2012) The electromagnetic properties and microwave absorption of mesoporous carbon. Mater Chem Phys 135(2):884–891. https://doi.org/10.1016/j.matchemphys.2012.05.074

    Article  CAS  Google Scholar 

  22. Liu T, Pang Y, Xie XB (2016) Kobayashi Satoru, Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material. J Mater Chem C. https://doi.org/10.1039/C5TC03874J

    Article  Google Scholar 

  23. Ma W, He P, Wang T, Xu J, Liu X, Zhuang Q et al (2021) Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chem Eng Sci 420. https://doi.org/10.1016/j.cej.2021.129875

  24. Bommier C, Luo W, Gao W-Y, Greaney A, Ma S, Ji X (2014) Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements. Carbon 76:165–174. https://doi.org/10.1016/j.carbon.2014.04.064

    Article  CAS  Google Scholar 

  25. Wang N, Hong Y, Liu TX, Wang Q, Huang J (2021) Sucrose derived microporous–mesoporous carbon for advanced lithium–sulfur batteries. Ceram Int 47(1):899–906. https://doi.org/10.1016/j.ceramint.2020.08.202

    Article  CAS  Google Scholar 

  26. Takanabe K, Nagaoka K, Nariai K, Aika KI (2005) Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. J Catal 232(2):268–275. https://doi.org/10.1016/j.jcat.2005.03.011

  27. Sun H, Che R, You X, Jiang Y, Yang Z, Deng J et al (2014) Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater 26(48):8120–8125. https://doi.org/10.1002/adma.201403735

    Article  CAS  Google Scholar 

  28. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758. https://doi.org/10.1021/nl904286r

    Article  CAS  Google Scholar 

  29. Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R et al (2014) An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun 5:3002. https://doi.org/10.1038/ncomms4002

    Article  CAS  Google Scholar 

  30. Wang L, Wen B, Bai X, Liu C, Yang H (2019) Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber. J Colloid Interface Sci 540:30–38. https://doi.org/10.1016/j.jcis.2018.12.111

    Article  CAS  Google Scholar 

  31. Liu P, Zhang Y, Yan J, Huang Y, Xia L, Guang Z (2019) Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem Eng J 368:285–298. https://doi.org/10.1016/j.cej.2019.02.193

    Article  CAS  Google Scholar 

  32. Zhang H, Wang B, Feng A, Zhang N, Jia Z, Huang Z et al (2019) Mesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbers. Compos B Eng 167:690–699. https://doi.org/10.1016/j.compositesb.2019.03.055

    Article  CAS  Google Scholar 

  33. Li Z, Han X, Ma Y, Liu D, Wang Y, Xu P et al (2018) MOFs-derived hollow Co/C microspheres with enhanced microwave absorption performance. ACS Sustain Chem Eng 6(7):8904–8913. https://doi.org/10.1021/acssuschemeng.8b01270

    Article  CAS  Google Scholar 

  34. Wu N, Liu C, Xu D, Liu J, Liu W, Liu H et al (2019) Ultrathin high-performance electromagnetic wave absorbers with facilely fabricated hierarchical porous Co/C crabapples. J Mater Chem C 7(6):1659–1669. https://doi.org/10.1039/C8TC04984J

    Article  CAS  Google Scholar 

  35. Wei H, Zhang Z, Hussain G, Zhou L, Li Q, Ostrikov K (2020) Techniques to enhance magnetic permeability in microwave absorbing materials. Appl Mater Today 19:100596. https://doi.org/10.1016/j.apmt.2020.100596

    Article  Google Scholar 

  36. Ma G, Xia L, Yang H, Wang X, Zhang T, Huang X et al (2021) Multifunctional lithium Aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption. Chem Eng J 418:129429. https://doi.org/10.1016/j.cej.2021.129429

    Article  CAS  Google Scholar 

  37. Wu N, Lv H, Liu J, Liu Y, Wang S, Liu W (2016) Improved electromagnetic wave absorption of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys Chem Chem Phys 18(46):31542–31550. https://doi.org/10.1039/C6CP06066H

    Article  CAS  Google Scholar 

  38. Yang Y, Xia L, Zhang T, Shi B, Huang L, Zhong B et al (2018) Fe3O4@LAS/RGO compo-sites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem Eng J 352:510–518. https://doi.org/10.1016/j.cej.2018.07.064

    Article  CAS  Google Scholar 

  39. Lou Z, Han H, Zhou M, Han J, Cai J, Huang C et al (2018) Synthesis of magnetic wood with excellent and tunable electromagnetic wave-absorbing properties by a facile vacuum/pressure impregnation method. ACS Sustain Chem Eng 6(1):1000–1008. https://doi.org/10.1021/acssuschemeng.7b03332

    Article  CAS  Google Scholar 

  40. Zhan Y, Xia L, Yang H, Zhou N, Ma G, Zhang T et al (2021) Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized direc-tly and rapidly via an innovative induction heating technique. Carbon 175:101–111. https://doi.org/10.1016/j.carbon.2020.12.080

    Article  CAS  Google Scholar 

  41. Shi XL, Cao M-S, Yuan J, Fang X-Y (2009) Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl Phys Lett 95(16):163108. https://doi.org/10.1063/1.3250170

    Article  CAS  Google Scholar 

  42. Wu N, Lv H, Liu J, Liu Y, Wang S, Liu W (2016) Improved electromagnetic wave absorpt-ion of Co nanoparticles decorated carbon nanotubes derived from synergistic magnetic and dielectric losses. Phys Chem Chem Phys 18(46):31542–31550. https://doi.org/10.1039/c6cp06066h

    Article  CAS  Google Scholar 

  43. Xie P, Liu Y, Feng M, Niu M, Liu C, Wu N et al (2021) Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Mater 4(1):173–185. https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  44. Liang L, Yang R, Han G, Feng Y, Zhao B, Zhang R et al (2020) Enhanced Electromagnetic Wave-Absorbing Performance of Magnetic Nanoparticles-Anchored 2D Ti3C2Tx MX-ene. ACS Appl Mater Interfaces 12(2):2644–2654. https://doi.org/10.1021/acsami.9b18504

    Article  CAS  Google Scholar 

  45. Cao MS, Wang XX, Zhang M, Shu JC, Cao WQ, Yang H-J et al (2019) Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials. Adv Func Mater 29(25):1807398. https://doi.org/10.1002/adfm.201807398

    Article  CAS  Google Scholar 

  46. Li T, Xia L, Yang H, Wang X, Zhang T, Huang X et al (2021) Construction of a Cu–Sn heterojunction interface derived from a Schottky junction in Cu@Sn/rGO composites as a highly efficient dielectric microwave absorber. ACS Appl Mater Interfaces 13(10):11911–11919. https://doi.org/10.1021/acsami.0c22049

    Article  CAS  Google Scholar 

  47. Kong L, Yin X, Zhang Y, Yuan X, Li Q, Ye F et al (2013) Electromagnetic wave absorpt-ion properties of reduced graphene oxide modified by maghemite colloidal nanopa-rticle clusters. J Phys Chem C 117(38):19701–19711. https://doi.org/10.1021/jp4058498

    Article  CAS  Google Scholar 

  48. Su Z, Tao J, Xiang J, Zhang Y, Su C, Wen F (2016) Structure evolution and microwave absorption properties of nickel nanoparticles incorporated carbon spheres. Mater Res Bull 84:445–448. https://doi.org/10.1016/j.materresbull.2016.08.036

    Article  CAS  Google Scholar 

  49. Mao L, Zhang Y, Hu Y, Ho KH, Ke Q, Liu H et al (2015) Activation of sucrose-derived carbon spheres for high-performance supercapacitor electrodes. RSC Adv 5(12):9307–9313. https://doi.org/10.1039/C4RA11028E

    Article  CAS  Google Scholar 

  50. Che RC, Peng L-M, Duan XF, Chen Q, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16(5):401–405. https://doi.org/10.1002/adma.200306460

    Article  CAS  Google Scholar 

  51. Zhao S, Wang C, Su T, Zhong B (2019) One-step hydrothermal synthesis of Ni–Fe–P/graphene nanosheet composites with excellent electromagnetic wave absorption properties. RSC Adv 9(10):5570–5581. https://doi.org/10.1039/C9RA00085B

    Article  CAS  Google Scholar 

  52. Qiu X, Wang L, Zhu H, Guan Y, Zhang Q (2017) Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9(22):7408–7418. https://doi.org/10.1039/C7NR02628E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant nos. 51302051 and 51872058), the Key Research and Development Program of Shandong Province (Nos. 2018JMRH0107 and 2019JMRH0402), Natural Science Foundation of Shandong (ZR2012EMQ 007), and Weihai supporting project for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Zhang or Huatao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 183 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, K., Ding, J. et al. Construction of Ni-based alloys decorated sucrose-derived carbon hybrid towards: effective microwave absorption application. Adv Compos Hybrid Mater 5, 2260–2270 (2022). https://doi.org/10.1007/s42114-021-00383-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00383-1

Keywords

Navigation