Skip to main content

Advertisement

Log in

Deciphering prospective groundwater zones in Bankura district, West Bengal: a study using GIS platform and MIF techniques

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

The advent of geographic information system (GIS) and remote sensing (RS) tools has greatly helped in delineating the groundwater prospective zones for various watershed development and management. The origin, occurrence and migration of groundwater is dependent on many factors such as geomorphology, soil, geology, drainage density, slope, lineament, land use/land cover and rainfall. Thematic maps comprising of all these parameters along with water-level fluctuations have been prepared by using satellite image, water level data, along with ground truth and associated information. Based on these, a study was carried out for deciphering the groundwater prospective zones in Bankura district, West Bengal, India. A technique now common on GIS platforms—multi-influencing factor has been utilized in which ranks and weights were given to every criterion and statistically computed. For validation of the generated model bearing the groundwater prospective zones, fluctuation records of groundwater levels from various wells located in the study area and “groundwater potential yield data” were put to use. Finally, five classes of prospective groundwater zones have been identified namely: very good, good, moderate, poor and very poor zones. The potential zones have been determined by weighted overlay method using the ArcGIS 9.2 spatial analyst tool. While making the analysis, the ranking has been provided for each individual parameter of each thematic map and depending on their influence, weights have been assigned. It was noted that 18.36% (1248.81 km2) and 25.55% (1737.15 km2) of the study area is categorized under ‘very good’ and ‘good’ zone with respect to groundwater potentiality, respectively. Approximately 1988.66 km2 area covering around 29.24% of the study area has been categorized as ‘moderate’. ‘poor’ and ‘very poor’ groundwater prospective zones cover an area of 21.06% (1432.44 km2) and 5.79% (392.94 km2) of the total study area, respectively. The result thus obtained have been verified by collected yield data from existing sources and getting confirmation on that the higher yield categories are falling within excellent groundwater potential zones where yield ranges from 20 to 40 l/s and lower values ranging from 8 to 11 l/s are falling within poor groundwater potential zones. Study like this is vital in the water resource development scheme as it will minimize the cost of time-consuming field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Source: GSI district resource map 2001

Fig. 4

Source: LISS-IV satellite image

Fig. 5

Source: Cartosat 1 DEM

Fig. 6

Source: Cartosat 1 DEM

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Source: Department of Agriculture (West Bengal) rainfall data

Fig. 12

Source: NBSS&LUP soil map West Bengal

Fig. 13

Source: LISS-IV satellite image supervised classification

Fig. 14
Fig. 15: a
Fig. 16

Similar content being viewed by others

References

  • Amadi, A. N., & Olasehinde, P. I. (2010). Application of remote sensing techniques in hydrogeological mapping of parts of Bosso Area, Minna, North-Central Nigeria. International Journal of Physical Sciences, 5(9), 1465–1474.

    Google Scholar 

  • Anbazhagan, S., & Jothibasu, A. (2014). Geoinformatics in groundwater potential mapping and sustainable development: A case study from southern India. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2014.990966.

    Article  Google Scholar 

  • Anbazhagan, S., Ramasamy, S. M., & Gupta, D. S. (2005). Remote sensing and GIS for artificial recharge study, runoff estimation and planning in Ayyar basin, Tamil Nadu, India. Environmental Geology, 48, 158–170.

    Article  CAS  Google Scholar 

  • Arkoprovo, B., Adarsa, J., & Prakash, S. S. (2012). Delineation of groundwater potential zones using satellite remote sensing and geographic information system techniques: A case study from Ganjam district, Orissa, India. Research Journal of Recent Sciences, 1(9), 59–66.

    Google Scholar 

  • Badamasi, S., Sawa, B. A., & Garba, M. L. (2016). Groundwater potential zones mapping using remote sensing and geographic information system techniques (GIS) in Zaria, Kaduna State, Nigeria. American Scientific Research Journal for Engineering, Technology and Sciences, 24(1), 51–62.

    Google Scholar 

  • Bagyaraj, M., Ramkumar, T., Venkatramanan, S., & Gurugnanam, B. (2013). Application of remote sensing and GIS analysis for identifying groundwater potential zone in parts of Kodaikanal Taluk, South India. Frontiers in Earth Science, 7(1), 65–75.

    Article  Google Scholar 

  • Balasubramani, K. (2011). Identification of groundwater potential zones using geospatial techniques: A case study of upper Vaigai Basin, Tamil Nadu. Journal of Water and Land Use Management, 11(1), 13–24.

    Google Scholar 

  • Chenini, I., Benmammou, A., & Elmay, M. (2010). Groundwater recharge zone mapping using GIS-based multi-criteria analysis: A case study in central Tunisia (Maknassy Basin). International Journal of Water Resources Management, 24, 921–939.

    Article  Google Scholar 

  • Chipman, J. W., & Lillesand, T. M. (2007). Satellite-based assessment of the dynamics of new lakes in southern Egypt. International Journal of Remote Sensing, 28(19), 4365–4379.

    Article  Google Scholar 

  • Chowdary, V. M., Chandran, R. V., & Neeti, N. (2008). Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agricultural Water Management, 95(7), 754–766.

    Article  Google Scholar 

  • Chowdhury, A., Jha, M. K., Chowdary, V. M., & Mal, B. C. (2009). Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30(1), 231–250.

    Article  Google Scholar 

  • Chuma, C., Orimoogunje, O. O. I., Hlatywayo, D. J., & Akinyede, J. O. (2013). Application of remote sensing and geographical information systems in determining the groundwater potential in the crystalline basement of Bulawayo metropolitan area, Zimbabwe. Advanced Remote Sensing, 2, 149–161.

    Article  Google Scholar 

  • Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30, 451–472.

    Article  Google Scholar 

  • Dar, I. A., Sankar, K., & Dar, M. A. (2011). Deciphering groundwater potential zones in hard rock terrain using geospatial technology. Environmental Monitoring and Assessment, 173, 597–610. https://doi.org/10.1007/s10661-010-1407-6.

    Article  Google Scholar 

  • Das, D. (1997). Enhancement analysis of geological linear features for groundwater information extraction. In Abs Vol. International Conference on Management of Drinking Water: 1. Chennai: CLRI.

  • Das, S., Gupta, A., & Ghosh, S. (2017). Exploring groundwater potential zones using MIF technique in semi-arid region: A case study of Hingoli district, Maharashtra. Spatial Information Research, 25(6), 749–756.

    Article  Google Scholar 

  • Das, D., & Kader, A. (1996). A geomorphological approach for selecting the sites for artificial recharge of groundwater in the upper-catchment area of the Kumari river basin, eastern India (Abs). In ISM, Dhanbad, 35 Abs Vol., 10th Convention of IGC.

  • Davoodi, M. D., Rezaei, M., Pourghasemi, H. R., Pourtaghi, Z. S., & Pradhan, B. (2015). Groundwater spring potential mapping using bivariate statistical model and GIS in the Taleghan watershed, Iran. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-013-1161-5.

    Article  Google Scholar 

  • Detay, M., Poyet, P., Emsellem, Y., Bernardi, A., & Aubrac, G. (1989). Development of the saprolite reservoir and its state of saturation: Influence on the hydrodynamic characteristics of drillings in crystalline basement (in French). Comptes Rendus de l Academie des Sciences Serie II, 309, 429–436.

    Google Scholar 

  • Dhakate, R., & Singh, V. S. (2005). Estimation of hydraulic parameters from surface geophysical methods, Kaliapani ultramafic complex, Orissa, India. Journal of Environmental Hydrology, 13, 1–11.

    Google Scholar 

  • Drury, S. A. (1990). Image interpretation in geology (2nd ed.). London: Chapman & Hall.

    Google Scholar 

  • Fashae, O. A., Tijani, M. N., Talabi, A. O., & Adedeji, O. I. (2014). Delineation of groundwater potential zones in the crystalline basement terrain of SW-Nigeria: An integrated GIS and remote sensing approach. Applied Water Science, 4, 19–38.

    Article  CAS  Google Scholar 

  • Ghosh, P. K., Bandyopadhyay, S., & Jana, N. C. (2016). Mapping of groundwater potential zones in hard rock terrain using geoinformatics: A case of Kumari watershed in western part of West Bengal. Modeling Earth Systems and Environment, 2, 1–12.

    Article  CAS  Google Scholar 

  • Gupta, R. P. (1991). Remote sensing in geology. Amsterdam: Springer.

    Book  Google Scholar 

  • Gustavsson, M., Kolstrup, E., & Seijmonsbergen, A. C. (2006). A new symbol and GIS based detailed geomorphological mapping system: Renewal of a scientific discipline for understanding landscape development. Geomorphology, 77, 90–111.

    Article  Google Scholar 

  • Hammouri, N. A., El-Naqa, A., & Barakat, M. (2012). An integrated approach to groundwater exploration using remote sensing and geographic information system. Journal of Water Resource and Protection, 4(9), 717–724.

    Article  Google Scholar 

  • Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2003). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development: An approach. International Journal of Remote Sensing, 24(5), 993–1008.

    Article  Google Scholar 

  • Jasmin, I., & Mallikarjuna, P. (2011). Review: Satellite-based remote sensing and geographic information systems and their application in the assessment of groundwater potential, with particular reference to India. Hydrogeology Journal, 19(4), 729–740.

    Article  Google Scholar 

  • Jasrotia, A. S., Kumar, R., & Saraf, A. K. (2007). Delineation of groundwater recharge sites using integrated remote sensing and GIS in Jammu district, India. International Journal of Remote Sensing, 28(22), 5019–5036.

    Article  Google Scholar 

  • Javed, A., & Wani, M. H. (2009). Delineation of groundwater potential zones in Kakund watershed, eastern Rajasthan, using remote sensing and GIS techniques. Journal of the Geological Society of India, 73(2), 229–236.

    Article  CAS  Google Scholar 

  • Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18(7), 1713–1728.

    Article  Google Scholar 

  • Kamal, A. S. M. M., & Midorikawa, S. (2004). GIS-based geomorphological mapping using remote sensing data and supplementary geoinformation: A case study of the Dhaka city area, Bangladesh. International Journal of Applied Earth Observation and Geoinformation, 6, 111–125.

    Article  Google Scholar 

  • Krishnamurthy, J., Mani, A., Jayraman, V., & Manivel, M. (2000). Groundwater resources development in hard rock terrain: An approach using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 3(3–4), 204–215.

    Article  Google Scholar 

  • Kumar, M. G., Agarwal, A. K., & Bali, R. (2008). Delineation of potential sites for water harvesting structures using remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 36(4), 323–334.

    Article  Google Scholar 

  • Kumar, P. K., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583–5601.

    Article  Google Scholar 

  • Kumar, P., Herath, S., Avtar, R., & Takeuchi, K. (2016). Mapping of groundwater potential zones in Killinochi area, Sri Lanka, using GIS and remote sensing techniques. Sustainable Water Resources Management, 2(4), 419–430.

    Article  Google Scholar 

  • Lee, S., Kim, Y. S., & Ob, H. J. (2012). Application of weights-of-evidence method and GIS to regional groundwater productivity potential mapping. Journal of Environmental Management, 96(1), 91–105.

    Article  Google Scholar 

  • Lilesand, T. M. (1989). Remote sensing and image interpretation. Hoboken: Wiley.

    Google Scholar 

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. (2007). Remote sensing and image interpretation. Hoboken: Wiley.

    Google Scholar 

  • Llamas, M. R., & Martínez-Santos, P. (2005). Intensive groundwater use: Silent revolution and potential source of social conflicts. Journal of Water Resources Planning and Management. American Society of Civil Engineers, 131, 337–341.

    Google Scholar 

  • Lone, M. S., Nagaraju, D., Mahadavesamy, G., & Siddalingamurthy, S. (2013). Applications of GIS and remote sensing to delineate artificial recharge zones (DARZ) of groundwater in H.D. Kote taluk, Mysore district, Karnataka, India. International Journal of Remote Sensing and Geoscience, 2(3), 92–97.

    Google Scholar 

  • Madrucci, V., Taioli, F., & de Araújo, C. C. (2008). Groundwater favorability map using GIS multicriteria data analysis on crystalline terrain, São Paulo State, Brazil. Journal of Hydrology, 357(3–4), 153–173.

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. GSF, 3(2), 189–196. https://doi.org/10.1016/j.gsf.2011.10.007.

    Article  Google Scholar 

  • Mondal, Md S, Pandey, A. C., & Garg, R. D. (2008). Groundwater prospects evaluation based on hydrogeomorphological mapping using high resolution satellite images: A case study in Uttarakhand. Journal of the Indian Society of Remote Sensing, 36(1), 69–76.

    Article  Google Scholar 

  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A REVIew of hydrological, geomorphological and biological applications. Hydrological Processes, 5(1), 3–30.

    Article  Google Scholar 

  • Mukherjee, P., Singh, S. K., & Mukherjee, S. (2012). Delineation of groundwater potential zones in arid region of India—A remote sensing and GIS approach. Water Resources Management, 26(9), 2643–2672.

    Article  Google Scholar 

  • Murthy, K. S. R. (2000). Groundwater potential in a semi-arid region of Andhra Pradesh: A geographical information system approach. International Journal of Remote Sensing, 21(9), 1867–1884.

    Article  Google Scholar 

  • Murthy, K. S. R., & Mamo, A. G. (2009). Multi-criteria decision evaluation in groundwater zones identification in Moyale-Teltele subbasin, South Ethiopia. International Journal of Remote Sensing, 30, 2729–2740. https://doi.org/10.1080/01431160802468255.

    Article  Google Scholar 

  • Nag, S. K. (2005). Application of lineament density and hydrogeomorphology to delineate groundwater potential zones of Baghmundi block in Purulia district, West Bengal. Journal of Indian Society of Remote Sensing, 33(4), 522–529.

    Article  Google Scholar 

  • Nag, S. K., & Ghosh, P. (2013). Delineation of groundwater potential zone in Chhatna Block, Bankura District, West Bengal, India using remote sensing and GIS techniques. Environmental Earth Sciences, 70, 2115–2127.

    Article  Google Scholar 

  • Nampak, H., Pradhan, B., & Manap, M. A. (2014). Application of GIS based data driven evidential belief function model to predict ground-water potential zonation. Journal of Hydrology, 513, 283–300.

    Article  Google Scholar 

  • Narendra, K., Rao, K. N., & Latha, P. S. (2013). Integrating remote sensing and GIS for identification of groundwater prospective zones in the Narava Basin, Visakhapatnam Region, Andhra Pradesh. Journal of the Geological Society of India, 81(2), 248–260.

    Article  Google Scholar 

  • Ndatuwong, G., & Yadav, G. S. (2014). Integration of hydrogeological factors for identification of groundwater potential zones using remote sensing and GIS techniques. Journal of Geosciences and Geomatics, 2(1), 1–16.

    Google Scholar 

  • Ojo, J. S., Olorunfemi, M. O., Akintorinwa, O. J., Bayode, S., Omosuyi, G. O., & Akinluyi, F. O. (2015). GIS integrated geomorphological, geological and geoelectrical assessment of the groundwater potential of Akure Metropolis, Southwest Nigeria. Journal of Earth Sciences and Geotechnical Engineering, 5(14), 85–101.

    Google Scholar 

  • Olayinka, A. I. (1992). Geophysical siting of boreholes in crystalline basement areas of Africa. Journal of African Earth Sciences, 14, 197–207.

    Article  Google Scholar 

  • Olorunfemi, M. O., Ojo, J. S., & Akintunde, O. M. (1999). Hydrogeophysical evaluation of the groundwater potentials of Akure metropolis, Southwestern Nigeria. Journal of Mining and Geology, 35(2), 207–228.

    Google Scholar 

  • Pareta, K., & Pareta, U. (2011). Hydromorphogeological study of Karawan watershed using GIS and remote sensing techniques. International Scientific Research Journal, 3(4), 243–268.

    Google Scholar 

  • Pinder, G. F. (2002). Groundwater modelling using geographical information systems (p. 248). New York: Wiley.

    Google Scholar 

  • Prabu, P., & Rajagopalan, B. (2012). A GIS and remote sensing based evaluation of groundwater potential zones in a hard rock terrain of Vaigai sub-basin, India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-011-0512-3.

    Article  Google Scholar 

  • Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475.

    Article  Google Scholar 

  • Rahmati, O., Nazari Samani, A., Mahdavi, M., Pourghasemi, H. R., & Zeinivand, H. (2014). Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-014-1668-4.

    Article  Google Scholar 

  • Rahmati, O., Nazari Samani, A., Mahmoodi, N., & Mahdavi, M. (2015). Assessment of the contribution of N-fertilizers to nitrate pollution of groundwater in western Iran (case study: Ghorveh-Dehgelan Aquifer). Water Quality, Exposure and Health, 7(13), 143–151.

    Article  CAS  Google Scholar 

  • Rajaveni, S. P., Brindha, K., & Elango, L. (2017). Geological and geomorphological controls on groundwater occurrence in a hard rock region. Applied Water Science, 7(13), 1377–1389.

    Article  Google Scholar 

  • Rao, N., Chakradhar, G. K. J., & Srinivas, V. (2001). Identification of groundwater potential zones using remote sensing techniques in and around Guntur town, Andhra Pradesh, India. Journal of the Indian Society of Remote Sensing, 29(1,2), 69–78.

    Article  Google Scholar 

  • Rao, Y. S., & Jugran, D. K. (2003). Delineation of groundwater potential zones and zones of groundwater quality suitable for domestic purposes using remote sensing and GIS. Hydrological Sciences-Journal-des Sciences Hydrologiques, 48(5), 821–833.

    Article  Google Scholar 

  • Rashid, M., Lone, M. A., & Ahmed, S. (2012). Integrating geospatial and ground geophysical information as guidelines for groundwater potential zones in hard rock terrains of south India. Environmental Monitoring and Assessment, 184(8), 4829–4839.

    Article  CAS  Google Scholar 

  • Saraf, A., & Choudhury, P. R. (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge site. International Journal of Remote Sensing, 19(10), 1825–1841.

    Article  Google Scholar 

  • Sener, E., Davraz, A., & Ozcelik, M. (2005). An integration of GIS and remote sensing in groundwater investigations: a case study in Burdur, Turkey. Hydrogeology Journal, 13(5–6), 826–834.

    Article  Google Scholar 

  • Shahid, S., & Nath, S. K. (2002). GIS integration of remote sensing and electrical sounding data for hydrogeological exploration. Journal of Spatial Hydrology, 2(1), 1–12.

    Google Scholar 

  • Singh, A. K., Parkash, B., & Choudhury, P. R. (2007). Integrated use of SRM, Landsat ETM + data and 3D perspective views to identify the tectonic geomorphology of Dehradun valley, India. International Journal of Remote Sensing, 28(11), 2403–2414.

    Article  Google Scholar 

  • Singh, P., Thakur, J. K., & Kumar, S. (2013). Delineating groundwater potential zones in a hard-rock terrain using geospatial tools. Hydrological Sciences Journal, 58(1), 213–223.

    Article  Google Scholar 

  • Solomon, S., & Quiel, F. (2006). Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeology Journal, 14(10), 29–1041.

    Google Scholar 

  • Sreedevi, P. D., Subrahmanya, K., & Ahmed, S. (2005). Integrated approach for delineating potential zones to explore for groundwater in the Pageru River basin, Cuddapah District, Andhra Pradesh, India. Hydrogeology Journal, 13, 534–543.

    Article  CAS  Google Scholar 

  • Srivastava, P. K., & Bhattacharya, A. K. (2006). Groundwater assessment through an integrated approach using remote sensing, using remote sensing, GIS and resistivity techniques: A case study from a hard rock terrain. International Journal of Remote Sensing, 27(20), 4599–4620.

    Article  Google Scholar 

  • Suganthi, S., Elango, L., & Subramanian, S. K. (2013). Groundwater potential zonation by remote sensing and GIS techniques and its relation to the groundwater level in the coastal part of the Arani and Koratalai River Basin, Southern India. Earth Sciences Research Journal, 17(2), 87–95.

    Google Scholar 

  • Talabi, A. O., & Tijani, M. N. (2011). Integrated remote sensing and GIS approach to groundwater potential assessment in the basement terrain of Ekiti area southwestern Nigeria. RMZ Materials and Geoenvironment, 58(3), 303–328.

    Google Scholar 

  • Taylor, R., & Howard, K. (2000). A tectono-geomorphic model of the hydrogeology of deeply weathered crystalline rock: Evidence from Uganda. Hydrogeology Journal, 8(3), 279–294.

    Article  Google Scholar 

  • Varughese, A., Suhail, A., Chitra, M. G., Jiji, P. S., Deepthy, C., & Raneesh, K. Y. (2012). Identification of shallow groundwater potential zones using GIS—A case study. International Journal of Advanced Engineering and Applications, 1(4), 65–70.

    Google Scholar 

  • Venkatesan, M., Kumaraswamy, K., & Balaselvakumar, S. (2017). Identification of groundwater potential zone in Vaippar Basin, Tamil Nadu through remote sensing and GIS techniques. International Journal of Scientific Research in Science and Technology, 3(7), 824–843.

    Google Scholar 

  • Vittala, S. S., Govindaiah, S., & Gowda, H. H. (2005). Evaluation of groundwater potential zones in the sub-watersheds of North Pennar river basin around Pavagada, Karnataka, India using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 33(4), 483–493.

    Article  Google Scholar 

  • Wyns, R., Baltassat, J. M., Lachassagne, P., Legchenko, A., Varion, J., & Mathieu, F. (2004). Application of SNMR soundings for groundwater reserves mapping in weathered basement rocks (Brittany, France). Bulletin de la Societe Geologique de France, 175(1), 21–34.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support for this research work received from DAE-BRNS Research Project [36(4)/14/35/2015-BRNS] Dated 31 March 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nag.

Ethics declarations

Conflict of interest

We do hereby certify that there is no potential conflict of interest in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nag, S.K., Chowdhury, P., Das, S. et al. Deciphering prospective groundwater zones in Bankura district, West Bengal: a study using GIS platform and MIF techniques. Int J Energ Water Res 5, 323–341 (2021). https://doi.org/10.1007/s42108-020-00110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-020-00110-4

Keywords

Navigation