Skip to main content
Log in

Experimental behaviour of square high-performance concrete slender columns under biaxial eccentric loading

  • Research
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

In this research, an experimental investigation of the behavior of square high-performance concrete (HPC) slender columns was carried out. A total of Eighty-One Square High-Performance Slender (SHPS) Columns subjected to axial, uniaxial and bi-axial loading were constructed and tested. The primary test parameters were the grade of HPC (varied from M60 to M80), steel ratios (2.01% to 4.52%), and eccentricity along the major axis was 28 mm. The test outcomes demonstrate that these parameters influence the strength and behavior of Square High-Performance Slender Columns. The steel ratio is a significant factor that influences the bearing capacity of column specimens, as in the experiment, and the load-bearing capacity of the specimens increased highly with increasing grade of concrete. Proper material constitutive models for SHPS columns are developed and validated against experimental data. A comparison of experimental failure loads to predicted failure loads using the method described in the reference showed good agreement. In the research work, interaction curves are plotted for high-performance slender columns with uniaxial and biaxial loading and novelty is observed that by comparing IS, ACI and present results, it was seen that IS code gives minimum load carrying capacity with heavier sections and high cost. Whereas ACI gives maximum load-carrying capacity with lighter sections and low cost. However, the present study gives an intermediate section with optimum load capacity and economy. Also, it is observed that columns tested in bi-axial compression are more sensitive than axial and uniaxial columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig.18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

Data availability

The dataset used in this research paper is available upon request from the corresponding author to facilitate further analysis and replication of the study’s findings.

References

  • Abdel-Karim, M., Abdel-Rahman, G. T., Said, M., & Shaaban, I. G. (2018). Proposed model for strength analysis of HSC eccentrically loaded slender columns. Magazine of Concrete Research, 70(7), 340–349. https://doi.org/10.1680/jmacr.17.00137

    Article  Google Scholar 

  • Aitcin, P. C. (1998). High-performance concrete. CRC Press.

    Book  Google Scholar 

  • Aitcin, P. C. (2018). The use of superplasticizers in high-performance concrete. High-performance concrete (pp. 14–33). CRC Press.

    Chapter  Google Scholar 

  • Aïtcin, P. C., Lachemi, M., Adeline, R., & Richard, P. (1998). The Sherbrooke reactive powder concrete footbridge. Structural Engineering International, 8(2), 140–144.

    Article  Google Scholar 

  • Akelilu, M. E. (2021). Experimental investigation on properties of mortar containing waste marble and fly ash (Doctoral dissertation).

  • Al-Taan, S. A., & AlDoski, A. J. S. A. A. (2020). Strength of steel fiber high-strength reinforced concrete columns under concentric and eccentric loads. Jordan Journal of Civil Engineering, 14(2), 210–224.

    Google Scholar 

  • Amran, M., Huang, S. S., Onaizi, A. M., Makul, N., Abdelgader, H. S., & Ozbakkaloglu, T. (2022a). Recent trends in ultra high-performance concrete (UHPC): Current status, challenges, and future prospects. Construction and Building Materials, 352, 129029. https://doi.org/10.1016/j.conbuildmat.2022.129029

    Article  Google Scholar 

  • Amran, M., Onaizi, A. M., Fediuk, R., Danish, A., Vatin, N. I., Murali, G., & Azevedo, A. (2022b). An ultra-lightweight cellular concrete for geotechnical applications—A review. Case Studies in Construction Materials, 16, e01096. https://doi.org/10.1016/j.cscm.2022.e01096

    Article  Google Scholar 

  • Awati, M., & Khadiranaikar, R. B. (2012). Behavior of concentrically loaded high-performance concrete tied columns. Engineering Structures, 37, 76–87. https://doi.org/10.1016/j.engstruct.2011.12.040

    Article  Google Scholar 

  • Chekravarty, D. S. V. S. M. R. K., Mallika, A., Sravana, P., & Rao, S. (2022). Effect of using nano silica on mechanical properties of normal strength concrete. Materials Today: Proceedings, 51, 2573–2578. https://doi.org/10.1016/j.matpr.2021.12.409

    Article  Google Scholar 

  • Cheng, X., Du, H., Shi, X., & Mansour, M. (2023). Ultimate biaxial bending resistance of H-section steel members under different loading paths. Journal of Constructional Steel Research, 200, 107678. https://doi.org/10.1016/j.jcsr.2022.107678

    Article  Google Scholar 

  • Clift, R., Pritchard, C. L., & Nedderman, R. M. (1966). The effect of viscosity on the flooding conditions in wetted wall columns. Chemical Engineering Science, 21(1), 87–95.

    Article  Google Scholar 

  • Dharmaraj, R., Bhadauria, S. S., Mayilsamy, K., Thivya, J., Karthick, A., Baranilingesan, I., Mohanavel, V., Muhibbullah, M., & Osman, S. M. (2022). Investigation of reinforced concrete column containing metakaolin and fly ash cementitious materials. Advances in Civil Engineering, 2022, 1–13. https://doi.org/10.1155/2022/1147950

    Article  Google Scholar 

  • Dinakar, P., Sethy, K. P., & Sahoo, U. C. (2013). Design of self-compacting concrete with ground granulated blast furnace slag. Materials & Design, 43, 161–169. https://doi.org/10.1016/j.matdes.2012.06.049

    Article  Google Scholar 

  • Elsayed, M., Tayeh, B. A., Abou Elmaaty, M., & Aldahshoory, Y. (2022). Behaviour of RC columns strengthened with ultra-high-performance fiber reinforced concrete (UHPFRC) under eccentric loading. Journal of Building Engineering, 47, 103857. https://doi.org/10.1016/j.jobe.2021.103857

    Article  Google Scholar 

  • Elwi, A. E., Begum, M., & Driver, R. G. (2007). Numerical simulations of the behaviour of partially encased composite columns.

  • Fatema, K., Sarker, M. A., Habib, A., & Alam, M. A. (2021). Effect of high range water reducing (HRWR) super plasticizer on compressive strength of sand cement solid block. International Journal of Engineering & Technology, 8(1), 7–14.

    Google Scholar 

  • Fitzwilliam, J., & Bisby, L. A. (2010). Slenderness effects on circular CFRP confined reinforced concrete columns. Journal of Composites for Construction, 14(3), 280–288. https://doi.org/10.3390/app11093968

    Article  Google Scholar 

  • Gao, K., Xie, H., Li, Z., Zhang, J., & Tu, J. (2021). Study on eccentric behavior and serviceability performance of slender rectangular concrete columns reinforced with GFRP bars. Composite Structures, 263, 113680. https://doi.org/10.1016/J.COMPSTRUCT.2021.113680

    Article  Google Scholar 

  • Hadi, M. N. S. (2006). Behaviour of FRP wrapped normal strength concrete columns under eccentric loading. Composite Structures, 72(4), 503–511. https://doi.org/10.1016/j.compstruct.2005.01.018

    Article  Google Scholar 

  • Harish, B., Dakshinamurthy, N. R., Sridhar, M., Rao, K. J. (2022). A study on mechanical properties of high strength concrete with alccofine as partial replacement of cement. Materials Today: Proceedings, 52, 1201–1210.

    Google Scholar 

  • Hsu, H. L., Jan, F. J., & Juang, J. L. (2009). Performance of composite members subjected to axial load and bi-axial bending. Journal of Constructional Steel Research, 65(4), 869–878. https://doi.org/10.1016/j.jcsr.2008.04.006

    Article  Google Scholar 

  • Hung, C. C., & Hu, F. Y. (2018). Behavior of high-strength concrete slender columns strengthened with steel fibers under concentric axial loading. Construction and Building Materials, 175, 422–433. https://doi.org/10.1016/j.conbuildmat.2018.04.201

    Article  Google Scholar 

  • Ibrahim, H. H. H., & MacGregor, J. G. (1996). Tests of eccentrically loaded high-strength concrete columns. ACI Structural Journal, 93, 585–594.

    Google Scholar 

  • Kavyateja, B. V., Guru Jawahar, J., & Sashidhar, C. (2020). Effect of alccofine and fly ash on analytical methods of self-compacting concrete. Innovative Infrastructure Solutions, 5, 1–11.

    Article  Google Scholar 

  • Khadiranaikar, R. B., & Awati, M. M. (2012). Concrete stress distribution factors for high-performance concrete. Journal of Structural Engineering, 138(3), 402–415.

    Article  Google Scholar 

  • Khan, S. U., Nuruddin, M. F., Ayub, T., & Shafiq, N. (2014). Effects of different mineral admixtures on the properties of fresh concrete. The Scientific World Journal. https://doi.org/10.1155/2014/986567

    Article  Google Scholar 

  • Kumar, P. U., & Kumar, B. S. C. (2016). Flexural behaviour of reinforced geopolymer concrete beams with GGBS and metakaoline. International Journal of Civil Engineering and Technology, 7(6), 260–277.

    Google Scholar 

  • Lai, B., Liew, J. R., & Xiong, M. (2019). Experimental study on high strength concrete encased steel composite short columns. Construction and Building Materials, 228, 116640.

    Article  Google Scholar 

  • Lewis, R. C. (2018). Silica fume. Properties of fresh and hardened concrete containing supplementary cementitious materials: State-of-the-art report of the RILEM Technical Committee 238-SCM, Working Group 4, pp. 99–121.

  • Ma, W. (2021). Behavior of aged reinforced concrete columns under high sustained concentric and eccentric loads (Doctoral dissertation, University of Nevada, Las Vegas). https://doi.org/10.34917/25374066

  • Mattock, A. H., Kriz, L. B., & Hognestad, E. (1961). Rectangular concrete stress distribution in ultimate strength design. Journal Proceedings, 57(2), 875–928.

    Google Scholar 

  • Mehta, P. K. (2004). High-performance, high-volume fly ash concrete for sustainable development. In Proceedings of the international workshop on sustainable development and concrete technology (pp. 3–14). Ames: Iowa State University.

  • Mendis, P. (2003). Design of high-strength concrete members: State-of-the-art. Progress in Structural Engineering and Materials, 5(1), 1–15. https://doi.org/10.1002/pse.138

    Article  Google Scholar 

  • Mohammed, H. (2015). Mechanical properties of ultra high strength fiber reinforced concrete (Doctoral dissertation, University of Akron).

  • Nadesan, M. S., & Dinakar, P. (2017). Permeation properties of high strength self-compacting and vibrated concretes. Journal of Building Engineering, 12, 275–281. https://doi.org/10.1016/j.jobe.2017.06.003

    Article  Google Scholar 

  • Naresh, K., & Dadapeer, A. B. S. (2017). A study on the properties of high strength concrete by using the nano materials. International Research Journal of Engineering and Tecchnology, 4(5), 2889–2894.

    Google Scholar 

  • Nilimaa, J. (2015). Concrete bridges: improved load capacity (Doctoral dissertation, Luleå tekniska universitet).

  • Pereira, P., Evangelista, L. M. F. D. R., & De Brito, J. M. C. L. (2012). The effect of superplasticizers on the mechanical performance of concrete made with fine recycled concrete aggregates. Cement and Concrete Composites, 34(9), 1044–1052. https://doi.org/10.1016/j.cemconcomp.2012.06.009

    Article  Google Scholar 

  • Seręga, S. (2015). Effect of transverse reinforcement spacing on fire resistance of high strength concrete columns. Fire Safety Journal, 71, 150–161. https://doi.org/10.1016/j.firesaf.2014.11.017

    Article  Google Scholar 

  • Shaaban, I. (2001). Ductility of biaxially loaded high strength reinforced concrete columns. Journal of Engineering and Applied Science, Cairo University, 48(4), 655–674.

    Google Scholar 

  • Shaaban, I. G., Abdel-Rahman, G. T., Said, M., Abdel-Karim, M., & Adesina, P. (2021). Strength of eccentrically loaded slender columns made with high-strength concrete. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 174(10), 849–872. https://doi.org/10.1680/jstbu.19.00064

    Article  Google Scholar 

  • Swartz, S. E., Nikaeen, A., Narayan Babu, H. D., Periyakaruppan, N., Refai, T. M. E. (1985). Structural bending properties of high strength concrete. In ACI. Special Publication (Vol. 87, pp. 147–178).

  • Townley, J., Karr, M., & SOFTWARE OPTIONS INC CAMBRIDGE MA. (1997). High performance computing environments. NASA, (19980047353).

  • Umamaheswaran, V., Sudha, C., Ravichandran, P. T., & Rajkumar, P. K. (2015). Use of M sand in high strength and high-performance concrete. Indian Journal of Science and Technology, 8(28), 1–8. https://doi.org/10.17485/ijst/2015/v8i1/84018

    Article  Google Scholar 

  • Uy, B. (2000). Strength of concrete filled steel box columns incorporating local buckling. Journal of Structural Engineering, 126(3), 341–352. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(341)

    Article  Google Scholar 

  • Wasilah, W. (2018). World multidisciplinary civil engineering-architecture-urban planning symposium.

  • Zeng, J. J., Guo, Y. C., Liao, J., Shi, S. W., Bai, Y. L., & Zhang, L. (2022). Behavior of hybrid PET FRP confined concrete-filled high-strength steel tube columns under eccentric compression. Case Studies in Construction Materials, 16, e00967. https://doi.org/10.1016/j.cscm.2022.e00967

    Article  Google Scholar 

Download references

Funding

There was no external funding for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The primary manuscript text and figure were written by all writers, who also edited the work.

Corresponding author

Correspondence to Bajirao V. Mane.

Ethics declarations

Conflict of interest

There are no further conflicts of interest that each author declares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, B.V., Patil, A.N. Experimental behaviour of square high-performance concrete slender columns under biaxial eccentric loading. Asian J Civ Eng (2024). https://doi.org/10.1007/s42107-024-01026-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42107-024-01026-8

Keywords

Navigation