Skip to main content
Log in

Machine learning approaches for real-time prediction of compressive strength in self-compacting concrete

  • Research
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Self-compacting concrete (SCC) has transformed civil engineering by efficiently filling formwork without mechanical consolidation, enhancing construction efficiency, and durability, and reducing labor needs. Accurate prediction of compressive strength (CS), a crucial mechanical property, is essential for optimal results. The complex nature of SCC mixtures has led researchers to explore modern days tool like machine learning and artificial intelligence. This study assesses six machine learning techniques (MLTs) by coupling long-established AI algorithms like artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and extreme learning machine (ELM) with nature-inspired optimization algorithms like moth flame optimization algorithm (MOFA) and wild horse optimizer (WHO). Addressing gaps in input parameter consistency, dataset standardization, and model comparison, the results demonstrate high accuracy in CS prediction for all six models, with ELM tuned with MFOA consistently outperforming others in various metrics. Visual representations validate model effectiveness, suggesting potential benefits such as improved quality control, reduced costs, and enhanced safety. This research contributes to MLT applications in construction materials, highlighting ELM–MOFA as a preferred model for CS prediction in SCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data and supplementary material are available on request.

References

  • Ahmad, W., Ahmad, A., Ostrowski, K. A., Aslam, F., Joyklad, P., & Zajdel, P. (2021). Application of advanced machine learning approaches to predict the compressive strength of concrete containing supplementary cementitious materials. Materials, 14(19), 5762.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Aicha, M. B., Al Asri, Y., Zaher, M., Alaoui, A. H., & Burtschell, Y. (2022). Prediction of rheological behavior of self-compacting concrete by multi-variable regression and artificial neural networks. Powder Technology, 401, 117345.

    Article  Google Scholar 

  • Al-Shamiri, A. K., Kim, J. H., Yuan, T. F., & Yoon, Y. S. (2019). Modeling the compressive strength of high-strength concrete: An extreme learning approach. Construction and Building Materials, 208, 204–219.

    Article  Google Scholar 

  • Amin, M. N., Al-Hashem, M. N., Ahmad, A., Khan, K., Ahmad, W., Qadir, M. G., & Al-Ahmad, Q. (2022). Application of soft-computing methods to evaluate the compressive strength of self-compacting concrete. Materials, 15(21), 7800.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Arora, S., Jangra, P., Lim, Y. Y., & Pham, T. M. (2023). Strength, durability, and microstructure of self-compacting geopolymer concrete produced with copper slag aggregates. Environmental Science and Pollution Research, 30(1), 666–684.

    Article  CAS  PubMed  Google Scholar 

  • Aslani, F., Ma, G., Wan, D. L. Y., & Muselin, G. (2018). Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. Journal of Cleaner Production, 182, 553–566.

    Article  Google Scholar 

  • Belalia Douma, O., Boukhatem, B., Ghrici, M., & Tagnit-Hamou, A. (2017). Prediction of properties of self-compacting concrete containing fly ash using artificial neural network. Neural Computing and Applications, 28, 707–718.

    Article  Google Scholar 

  • Buragohain, M., & Mahanta, C. (2008). A novel approach for ANFIS modelling based on full factorial design. Applied Soft Computing, 8(1), 609–625.

    Article  Google Scholar 

  • Chen, Z., Iftikhar, B., Ahmad, A., Dodo, Y., Abuhussain, M. A., Althoey, F., & Sufian, M. (2023). Strength evaluation of eco-friendly waste-derived self-compacting concrete via interpretable genetic-based machine learning models. Materials Today Communications, 37, 107356.

    Article  CAS  Google Scholar 

  • De-Prado-Gil, J., Palencia, C., Silva-Monteiro, N., & Martínez-García, R. (2022). To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models. Case Studies in Construction Materials, 16, e01046.

    Article  Google Scholar 

  • Dey, S., Kumar, V. P., Goud, K. R., & Basha, S. K. J. (2021). State of art review on self compacting concrete using mineral admixtures. Journal of Building Pathology and Rehabilitation, 6(1), 18.

    Article  Google Scholar 

  • Dutta, S., Murthy, A. R., Kim, D., & Samui, P. (2017). Prediction of compressive strength of self-compacting concrete using intelligent computational modeling. Computers, Materials & Continua, 53(2), 167–185.

    Google Scholar 

  • El Asri, Y., Aicha, M. B., Zaher, M., & Alaoui, A. H. (2022). Prediction of compressive strength of self-compacting concrete using four machine learning technics. Materials Today: Proceedings, 57, 859–866.

    Google Scholar 

  • Ghani, S., & Kumari, S. (2023). Prediction of soil liquefaction for railway embankment resting on fine soil deposits using enhanced machine learning techniques. Journal of Earth System Science, 132(3), 1–23.

    Article  Google Scholar 

  • Ghani, S., Kumari, S., & Bardhan, A. (2021). A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models. Sādhanā, 46(3), 113.

    Article  Google Scholar 

  • Ghani, S., Kumari, S., Jaiswal, S., & Sawant, V. A. (2022). Comparative and parametric study of AI-based models for risk assessment against soil liquefaction for high-intensity earthquakes. Arabian Journal of Geosciences, 15(14), 1262.

    Article  Google Scholar 

  • Hoang, N. D. (2022). Machine learning-based estimation of the compressive strength of self-compacting concrete: A multi-dataset study. Mathematics, 10(20), 3771.

    Article  Google Scholar 

  • Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.

    Article  Google Scholar 

  • Jibril, M. M., Malami, S. I., Muhammad, U. J., Bashir, A., Usman, A. G., Salami, B. A., & Abba, S. I. (2023). High strength concrete compressive strength prediction using an evolutionary computational intelligence algorithm. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-023-00746-7

    Article  Google Scholar 

  • Kar, S., Pandit, A. R., & Biswal, K. C. (2021). A neuro-fuzzy approach to estimate the shear contribution of externally bonded FRP composites. Asian Journal of Civil Engineering, 22, 351–367.

    Article  Google Scholar 

  • Kashem, A., & Das, P. (2023). Compressive strength prediction of high-strength concrete using hybrid machine learning approaches by incorporating SHAP analysis. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-023-00707-0

    Article  Google Scholar 

  • Kashyap, V., Poddar, A., Sihag, P., & Kumar, B. (2023). Forecasting compressive strength of jute fiber reinforced concrete using ANFIS, ANN, RF and RT models. Asian Journal of Civil Engineering. https://doi.org/10.1007/s42107-023-00892-y

    Article  Google Scholar 

  • Kaveh, A., DadrasEslamlou, A., Javadi, S. M., & Geran Malek, N. (2021). Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders. Acta Mechanica, 232, 921–931.

    Article  Google Scholar 

  • Kaveh, A., Eskandari, A., & Movasat, M. (2023). Buckling resistance prediction of high-strength steel columns using metaheuristic-trained artificial neural networks. Structures, 56, 104853.

    Article  Google Scholar 

  • Kaveh, A., Gholipour, Y., & Rahami, H. (2008). Optimal design of transmission towers using genetic algorithm and neural networks. International Journal of Space Structures, 23(1), 1–19.

    Article  Google Scholar 

  • Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable ai: A review of machine learning interpretability methods. Entropy, 23(1), 18.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Ly, H. B., Nguyen, T. A., Pham, B. T., & Nguyen, M. H. (2022). A hybrid machine learning model to estimate self-compacting concrete compressive strength. Frontiers of Structural and Civil Engineering, 16(8), 990–1002.

    Article  Google Scholar 

  • Nguyen-Sy, T., Wakim, J., To, Q. D., Vu, M. N., Nguyen, T. D., & Nguyen, T. T. (2020). Predicting the compressive strength of concrete from its compositions and age using the extreme gradient boosting method. Construction and Building Materials, 260, 119757.

    Article  Google Scholar 

  • Panda, K. C., & Bal, P. K. (2013). Properties of self compacting concrete using recycled coarse aggregate. Procedia Engineering, 51, 159–164.

    Article  Google Scholar 

  • Rajakarunakaran, S. A., Lourdu, A. R., Muthusamy, S., Panchal, H., Alrubaie, A. J., Jaber, M. M., & Ali, S. H. M. (2022). Prediction of strength and analysis in self-compacting concrete using machine learning based regression techniques. Advances in Engineering Software, 173, 103267.

    Article  Google Scholar 

  • Ramkumar, K. B., Rajkumar, P. K., Ahmmad, S. N., & Jegan, M. (2020). A review on performance of self-compacting concrete–use of mineral admixtures and steel fibres with artificial neural network application. Construction and Building Materials, 261, 120215.

    Article  CAS  Google Scholar 

  • Rofooei, F. R., Kaveh, A., & Farahani, F. M. (2011). Estimating the vulnerability of the concrete moment resisting frame structures using artificial neural networks. International Journal of Optimization Civil Engineering, 1(3), 433–448.

    Google Scholar 

  • Sadek, D. M., El-Attar, M. M., & Ali, H. A. (2016). Reusing of marble and granite powders in self-compacting concrete for sustainable development. Journal of Cleaner Production, 121, 19–32.

    Article  Google Scholar 

  • Sahoo, S. K., Saha, A. K., Nama, S., & Masdari, M. (2023). An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy. Artificial Intelligence Review, 56, 2811–2869. https://doi.org/10.1007/s10462-022-10218-0

    Article  Google Scholar 

  • Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah, S. N. R., Siddiqui, G. R., & Pathan, N. (2023). Predicting the behaviour of self-compacting concrete incorporating agro-industrial waste using experimental investigations and comparative machine learning modelling. Structures, 52, 536–548.

    Article  Google Scholar 

  • Shi, C., Wu, Z., Lv, K., & Wu, L. (2015). A review on mixture design methods for self-compacting concrete. Construction and Building Materials, 84, 387–398.

    Article  ADS  Google Scholar 

  • Sonebi, M., Cevik, A., Grünewald, S., & Walraven, J. (2016). Modelling the fresh properties of self-compacting concrete using support vector machine approach. Construction and Building Materials, 106, 55–64.

    Article  Google Scholar 

  • Tran, V. Q., Mai, H. V. T., Nguyen, T. A., & Ly, H. B. (2022). Assessment of different machine learning techniques in predicting the compressive strength of self-compacting concrete. Frontiers of Structural and Civil Engineering, 16(7), 928–945.

    Article  Google Scholar 

  • Yaman, M. A., Abd Elaty, M., & Taman, M. (2017). Predicting the ingredients of self compacting concrete using artificial neural network. Alexandria Engineering Journal, 56(4), 523–532.

    Article  Google Scholar 

  • Yaseen, Z. M., Deo, R. C., Hilal, A., Abd, A. M., Bueno, L. C., Salcedo-Sanz, S., & Nehdi, M. L. (2018). Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Advances in Engineering Software, 115, 112–125.

    Article  Google Scholar 

  • Zeng, C., Qin, T., Tan, W., et al. (2023). Coverage optimization of heterogeneous wireless sensor network based on improved wild horse optimizer. Biomimetics, 8, 70. https://doi.org/10.3390/biomimetics8010070

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

SG: conceptualization, machine learning application and interpretation of ML results, finalizing the draft. NK: conceptualization, results compilation, and writing the first draft. MG: Experimental investigation, data collection, processing of results, and writing the first draft. SS: processing, results compilation, and writing the first draft.

Corresponding author

Correspondence to Sufyan Ghani.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghani, S., Kumar, N., Gupta, M. et al. Machine learning approaches for real-time prediction of compressive strength in self-compacting concrete. Asian J Civ Eng 25, 2743–2760 (2024). https://doi.org/10.1007/s42107-023-00942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-023-00942-5

Keywords

Navigation