Skip to main content

Advertisement

Log in

Net Primary Production, Biochemical Composition and Economics of Sugarcane (Saccharum officinarum) Cultivation in Saline and Non-saline Soils of South-Western Punjab, India

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Sugarcane (Saccharum officinarum) is cultivated across the globe with substantial variability in cane productivity and biochemical quality attributes. We studied the performance of seven mid-late maturing sugarcane varieties (MLMSVs) and five early maturing sugarcane varieties (EMSVs) cultivated in saline (E.C.1:2 = 3.40 dS m−1) and non-saline (E.C.1:2 = 0.774 dS m−1) soils for quantitative assessment of biochemical and agronomic attributes, different components of net primary production (NPP) (viz. economic yield; NPPEY, above-ground biomass; NPPAGB, below-ground biomass; NPPBGB, litter; NPPL, rhizodeposition; NPPRhizo) and the economic efficiency of different varieties. Significant reduction (p < 0.05) in plant height with leaves, plant height without leaves, tillers plant−1, 5-cane weight, length of inter-nodes, inter-nodes stalk−1, cane diameter at ground surface and breast height by ~ 28.9, 17.3, 22.3, 45.6, 35.0, 10.9, 42.0 and 35.0% respectively was observed as compared to the non-saline soils. Higher productivity (92.1 Mg ha−1) of 22.1% was obtained under saline compared to the non-saline soils. Maximum accumulation rate (145.2–224.6 kg cane ha−1 d−1) for different sugarcane varieties in saline soils was significantly lower (by ~ 17.6%) than the non-saline soils. The agronomic N efficiency was significantly lower for CoPb-92 (352.4 kg cane kg−1 fertilizer-N) in saline soils, while for Co J-64 (550.3 kg cane kg−1 fertilizer-N) in the non-saline soils. Juice purity was decreased by ~ 18.7% in saline soils, as compared to the non-saline soils which exhibited a significant increase (R2 = 0.95**, p < 0.01) with increase in sucrose content. These results revealed a linear significant relationship between juice purity and commercial cane sugar (R2 = 0.97**, p < 0.01). However, salinity increased the total phenols (TP) content by ~ 10.1% over non-saline soils. These results showed that soil salinity significantly decreased the NPPEY, NPPAGB, NPPBGB, NPPL and NPPRhizo compared with the non-saline soils. The NPPAGB decreased by ~ 19.2–43.5% for EMSVs and ~ 15.9–28.0% for MLMSVs cultivated in saline soils. Amongst the varieties, CoPb-92 has significantly lower NPPEY (by ~ 35.3%) than the CoPb-95 in the saline soils. The average gross returns (AGRs) were significantly lower for CoPb-92, whilst the highest was obtained from CoPb-95 under saline conditions, which resulted in enhanced economic efficiency of 8.7 US$ ha−1 d−1 for CoPb-95 by ~ 55.4% in saline soils and ~ 8.5% in non-saline soils than CoPb-92.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  • Agastian, P., Kingsley, S., & Vivekanandan, M. (2000). Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica, 38, 287–290.

    Article  CAS  Google Scholar 

  • Akbarimoghaddam, H., Galavi, M., Ghanbari, A., & Panjehkeh, N. (2011). Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Science, 9(1), 43–50.

    Google Scholar 

  • Akhtar, S., Wahid, A., Akram, M., & Rasul, E. (2001). Effect of NaCl salinity on yield parameters of some Sugarcane genotypes. International Journal of Agricultural Biology, 3, 507–509. doi: 1560-8530/2001/03-4-507-509

  • Alam, K. S., Islam, M. S., Hossain, G. M. A., & Alam, K. M. (2018). Screening salinity tolerant Sugarcane varieties considering yield, quality and economic parameters in Southern region of Bangladesh. Eco-Friendly Agriculture Journal, 11, 38–42.

    Google Scholar 

  • Anonymous. (2022). Sugarcane Production in India—Largest Producing States. https://www.tractorjunction.com/blog/sugarcane-production-in-india-largest-producing-states/ (Assessed on 04–04–2023 at 3.16a.m.)

  • AOAC. (2000). Association of official analytical chemists. Official methods of analysis of the association of official analytical chemists (17th ed.). The Association of Official Analytical Chemists.

  • Avtar-Singh., Singh, P., & Mahajan, M. (2023). Agronomic and biochemical quality attributes and economic indices of sugarcane (Saccharum officinarum L.) cultivation in saline vis-à-vis non-saline soils of south-western Punjab, India. The Indian Journal of Agricultural Sciences, 93 (1), 106–109. https://doi.org/10.56093/ijas.v93i1.130246

  • Baljit-Singh., Dhillon, G.P.S., Avtar-Singh., & Singh, P. (2023). Soil salinity and variable moisture regimes impacts on growth attributes of Eucalyptus in North-western Punjab, India. Journal of Soil Salinity and Water Quality (In press).

  • Bernstein, L., Clark, R. A., Francois, L. E., & Derderian, M. D. (1966). Salt tolerance of NCo varieties of sugar cane. II. Effects of soil salinity and sprinkling on chemical composition. Agronomy Journal, 58, 503–507. https://doi.org/10.2134/agronj1966.00021962005800050014x

    Article  CAS  Google Scholar 

  • Bhatt, R., Singh, P., & Sharma, S. (2023). Changes in soil organic pool and carbon preservation capacity of macro-and micro-aggregates in response to land-use change in north-western India. Journal of Soil Science and Plant Nutrition (In press). https://doi.org/10.1007/s42729-023-01239-x

  • Blackburn. (1984). Sugarcane tropical agriculture series longman. London and New York, 68–74.

  • Bliss, M. B., Smart, C. M., Maricle, K. L., & Maricle, B. R. (2019). Effects of increasing salinity on photosynthesis and plant water potential in Kansas salt marsh species. Transactions of the Kansas Academy of Science, 122, 49–58.

    Article  Google Scholar 

  • Bodner, G., Nakhforoosh, A., & Kaul, H. P. (2015). Management of crop water under drought: A review. Agronomy for Sustainable Development, 35, 401–442.

    Article  Google Scholar 

  • Brar, H.S., & Singh, P. (2022). Pre-and post-sowing irrigation scheduling impacts on crop phenology and water productivity of cotton (Gossypium hirsutum L.) in sub-tropical north-western India. Agricultural Water Management, 274, 107982. https://doi.org/10.1016/j.agwat.2022.107982

  • Brindha, C., Vasantha, S., & kumar, R. A. (2019). The response of sugarcane genotypes subjected to salinity stress at different growth phases. Journal of Plant Stress Physiology, 5, 28–33.

    Google Scholar 

  • Carvalho, K. S., Vianna, M. S., Nassif, D. S. P., Costa, L. G., Folegatti, M. V., & Marin, F. R. (2019). Effect of soil straw cover on evaporation, transpiration, and evapotranspiration in sugarcane cultivation. Australian Journal of Crop Science, 13, 1362–1368. https://doi.org/10.21475/ajcs.19.13.08.p1814

    Article  CAS  Google Scholar 

  • CGWB. (2013). Ground water information booklet Bathinda district, Punjab. Ministry of Water Resources Government of India North Western Region CHANDIGARH. http://cgwb.gov.in/District_Profile/Punjab/Bathinda.pdf (Assessed on 10–03–2022 at 11.57 a.m.)

  • CGWB. (2017). Central Ground Water Board. Ministry of Water Resources, River Development and Ganga Rejuvenation, Government of India. Report on AQUIFER MAPPING AND MANAGEMENT PLAN Muktsar District, Punjab.

  • Cha-um, S., Chantawong, S., Mongkolsiriwatana, C., Ashraf, M., & Kirdmanee, C. (2013). Field screening of Sugarcane (Saccharum spp.) mutant and commercial genotypes for salt tolerance. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41, 286–293.

    Article  CAS  Google Scholar 

  • Cha-um, S., Chuencharoen, S., Mongkolsiriwatana, C., Ashraf, M., & Kridmanee, C. (2012). Screening sugarcane (Saccharum sp.) genotypes for salt tolerance using multivariate cluster analysis. Plant Cell Tissue Organ Culture, 110, 23–33.

    Article  CAS  Google Scholar 

  • Choudhary, H. R., & Singh, R. K. (2016). Effect of sequential application of herbicides on weeds and productivity of spring-planted sugarcane (Saccharum officinarum L.). International Journal of Life Science, 11, 687–690.

    CAS  Google Scholar 

  • Christy, P. M., Preetha, R. D., Vasantha, S., & Divya, D. (2013). Biochemical and molecular analysis of sugarcane genotypes response to salinity and drought. International Journal of Applied Biology and Pharmaceutical Technology, 4, 210–218.

    Google Scholar 

  • Cochran, W. G., & Cox, G. M. (1966). Experimental designs. John Wiley and Sons.

    Google Scholar 

  • Cruz, F. J. R., Júnior, D. C. F., & Santos, D. M. M. (2018). Low salt stress affects physiological parameters and sugarcane plant growth. Australian Journal of Crop Science, 12, 1272–1279.

    Article  CAS  Google Scholar 

  • Cushman, J.C., De Rocher, E.J., & Bohnert, H.J. (1990). Gene expression during adaptation to salt stress. In F, Kalterman (Ed.), Environmental Injury of Plants (pp. 173–203). Academic Press, San Diego.

  • Daba, A.W., & Qureshi, A.S. (2021). Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies. Land, 10, 377. https://doi.org/10.3390/land10121377

  • de Souza, A. P., Grandis, A., Leite, D. C. C., & Buckeridge, M. S. (2014). Sugarcane as a bioenergy source: History, performance, and perspectives for second-generation bioethanol. Bio Energy Research, 7, 24–35.

    CAS  Google Scholar 

  • Djajadi, D., Syaputra, R., & Hidayati, S.N. (2022). Effect of salt stress on nutrients content in soil andleaves of three varieties sugarcane. The 2nd International Conference on Sustainable Plantation. IOP Conf. Series: Earth and Environmental Science, 974, 012048 doi:https://doi.org/10.1088/1755-1315/974/1/012048

  • dos Santos Wanderley, L. R. D. S., de Oliveira, E. C. A., Freire, F. J., Neto, D. E. S., & Santos, R. L. (2021). Nutritional Requirement by Irrigated Brazilian Sugarcane Varieties. Sugar Tech, 23, 762–775. https://doi.org/10.1007/s12355-020-00921-z

    Article  CAS  Google Scholar 

  • FAO. (2018). Crop Statistics. http://www.fao.org/faostat/en/#data/QC.

  • FAO. (2020). FAOSTAT, Crops. Available online: http://www.fao.org/faostat/en/#data/QC

  • FAO. (2021). Global Map of Salt Affected Soils Version 1.0. https://www.fao.org/soils-po rtal/data-hub/soil-maps-and-databases/global-map-of-salt-affected-soils/en/. Accessed December 2021.

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185–212.

    Article  Google Scholar 

  • Gandonou, C. B., Gnancadja, L. S., Abrini, J., & Skali-Senhaji, N. (2012). Salinity tolerance of some sugarcane (Saccharum sp.) cultivars in hydroponic medium. International Sugar Journal, 114, 190–196.

    CAS  Google Scholar 

  • Ghassemi, F., Jakeman, A. J., & Nix, H. A. (1995). Salinisation of land and water resources: human causes, extent. CAB International.

    Google Scholar 

  • Ginoza, H., & Moore, P.H. (1985). Screening sugarcane varieties for tolerance to salinity. Report of Hawaiian Sugar Technologists, 43, EF5- EF6.

  • Gomathi, R., & Thandapani, P. V. (2004). Sugar metabolism and carbon partitioning of sugarcane genotypes under salinity stress condition. Sugar Tech, 6, 151–158.

    Article  CAS  Google Scholar 

  • Gopikrishnan, S., Srivastava, G., & Priakanth, P. (2022). Improving sugarcane production in saline soils with Machine Learning and the Internet of Things. Sustainable Computing: Informatics and Systems, 35, 100743. https://doi.org/10.1016/j.suscom.2022.100743

  • Gosset, D. R., Millhollon, E. P., & Lucas, M. C. (1994). Antioxidant response to NaCl stress in salt tolerant and salt-sensitive cultivars of cotton. Crop Science, 34, 706–714.

    Article  Google Scholar 

  • Govindaraj, P., Amalraj, V. A., Mohanraj, K., & Nair, N. V. (2014). Collection, characterization and phenotypic diversity of Saccharum spontaneum L. from arid and semi-arid zones of Northwestern India. Sugar Tech, 16, 36–43. https://doi.org/10.1007/s12355-013-0255-4

    Article  Google Scholar 

  • Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 701596.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanen, F., Ksouri, R., Megdiche, W., Trabelsi, N., Boulaaba, M., & Abdelly, C. (2008). Effect of Salinity on Growth, leaf Phenolic Content and Antioxidant Scavenging Activity in Cynara cardunculus. In C. Abdelli, M. Ozturk, M. Ashraf, & Y. C. Grignon (Eds.), Biosaline Agriculture and High Salinity Tolerance (pp. 335–343). Birkhauser Verlag.

    Chapter  Google Scholar 

  • Hare, P. D., Cress, W. A., & Staden, J. V. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environment, 21, 535.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Alam, M., Rahman, A., Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014). Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMedical Research International, 2014, 757219. https://doi.org/10.1155/2014/757219

  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Reviews in Plant Physiology and Plant Molecular Biology, 51, 463–499.

    Article  CAS  Google Scholar 

  • Hernandez, A., imenez, A., Mullineaux, P., & Sevilla, F. (2000). Tolerance of (Pisum sativum) to long term salt stress is associated with induction of antioxidant defenses. Plant Cell Biology, 23, 853-862

  • Huang, Y., Zhang, W., Sun, W., & Zheng, X. (2007). Net primary production of Chinese croplands from 1950 to 1999. Ecological Applications, 17, 692–701.

    Article  PubMed  Google Scholar 

  • Huaser, M. T., Aufsatz, W., Jonak, C., & Luschnig, C. (2011). Transgenerational epigenetic inheritance in plants. Biochimica Et Biophysica Acta, 1809, 459–468.

    Article  Google Scholar 

  • Hussain, A., Khan, Z. I., Ashraf, M., Rashid, M. H., & Akhtar, M. S. (2004). Effect of salt stress on some growth attributes of sugarcane cultivars CP-77-400 and COJ-84. International Journal of Agricultural Biology, 6, 188–191.

    Google Scholar 

  • Hussain, A., Khan, Z. I., Rashid, M. H., Ashraf, M., & Akhtar, M. S. (2003). Soil salinity effects on sugarcane productivity, biochemical characteristics, and invertase activity. Pakistan Journal of Life and Social Sciences, 1, 114–121.

    Google Scholar 

  • Kamble, S. A., & Kharate, M. S. (2019). Estimation of Dry Matter of Sugarcane (Saccharum Officinarum Linn.) crop by Ecological Method in Loamy Soil at Aurangabad. International Journal of Applied Environmental Sciences, 14, 211–216.

    Google Scholar 

  • Kingston, G. (1993). Geo-hydrology of soil and water salinity in the Maryborough Basin. Ph.D. Thesis, Grifrth University, Australia.

  • Kumar, P., & Sharma, P.K. (2020). Soil Salinity and Food Security in India. Frontiers in Sustainable Food Systems, 4, 533781. https://doi.org/10.3389/fsufs.2020.533781

  • Kumari, S., & Jha, C. K. (2018). Influence of sodium chloride induced salinity on growth, yield and juice quality of promising Sugarcane genotypes. International Journal of Current Microbiology and Applied Sciences, 7, 1366–1375.

    Article  Google Scholar 

  • Lingle, S. E., & Weigand, C. L. (1997). Soil salinity and Sugarcane juice quality. Field Crop Research, 54, 259–268.

    Article  Google Scholar 

  • Liu, L. J. (1967). Salinity effects on sugarcane germination, growth, and root development. Journal of Agriculture of the University of Puerto Rico, 51, 201–209.

    Article  Google Scholar 

  • Maas, E. V., & Hoffman, G. J. (1977). Crop salt tolerance current assessment. Journal of Irrigation and Drainage Engineering—ASCE, 103, 115–134.

    Google Scholar 

  • Meade, G. P., & Chen, J. C. P. (1971). Cane sugar hand book (10th ed.). John Wiley and Sons.

    Google Scholar 

  • Meinzer, F. C., Plaut, Z., & Saliendra, N. Z. (1994). Carbon isotope discrimination, gas exchange and growth of sugarcane cultivars under salinity. Plant Physiology, 104, 521–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menossi, M., Silva-Filho, M.C., Vincentz, M., Van-Sluys, M.A., & Souza, G.M. (2008). Sugarcane functional genomics: Gene discovery for agronomic trait development. International Journal of Plant Genomics, 2008, 458732. https://doi.org/10.1155/2008.

  • Mohammadi, G. R. (2009). The effect of seed priming on plant traits of late-spring seeded soybean (Glycine max L.). American-Eurasian Journal of Agricultural Environmental Science, 5, 322–326.

    CAS  Google Scholar 

  • Munns, R., James, R. A., & Lauchil, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Biology, 57, 1025.

    CAS  Google Scholar 

  • Munns, R., & Termaat, A. (1986). Whole plant response to salinity. Australian Journal of Plant Physiology, 13, 143–160.

    Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanism of salinity tolerance. Annual Review in Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  • Murad, A.M., Molinari, H.B.C., Magalhães, B.S., Franco, A.C., Takahashi, F.S.C., de Oliveira, N.G., Franco, O.L., & Quirino, B.F. (2014). Physiological and proteomic analyses of Saccharum spp. grown under salt stress. PLoS ONE, 9, e98463.

  • Mustafa, M. A. (2007). 2007. Desertification Processes; UNESCO Chair of Desertification/University of Khartoum.

    Google Scholar 

  • Muthukumarasamy, M., Gupta, S. D., & Pannerselvam, R. (2000). Enhancement of peroxidase, polyphenol oxidase and superoxide dismutase activities by triadimefon in NaCl stressed Raphanus sativus. Biologia Plantarum, 43, 317–320.

    Article  CAS  Google Scholar 

  • O’Hara, I. M., Edye, L. A., & Doherty, W. (2009). Towards a commercial lignocellulosic ethanol industry in Australia: The Mackay renewablebio commodities pilot plant. In Proceedings of the Australian Society of Sugarcane Technologists, Balina, Australia, 31, 11–17.

    Google Scholar 

  • O’Shea, M. S. (2007). Accumulation. In D. M. Hogarth & P. G. Allsopp (Eds.), Manual of Cane Growing, Fergies Printers (pp. 82–89). Brisbane.

    Google Scholar 

  • Padmathilake, K. R. E., Wickramaarachchi, V. N., Anver, M. A. M. S., & Bandara, D. C. (2007). Biological and economical feasibility of growing mint (Mentha sylvestris), mustard (Brassica integrifolia) and asamodagam (Trachyspermum involucratum) under hydroponics. Tropical Agricultural Research, 19, 193–201.

    Google Scholar 

  • Patade, V. Y., Suprasanna, P., & Bapat, V. A. (2008). Effects of salt stress in relation to osmotic adjustment on sugarcane (Saccharum officinarum L.) callus cultures. Plant Growth Regulation, 55, 169–173.

    Article  CAS  Google Scholar 

  • Patel, B. B., Bharat, P., & Dave, R. S. (2011). Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of north Gujarat. Journal of Applied Technology in Environmental Sanitation, 1, 87–92.

    Google Scholar 

  • Peng, J., Liu, J. R., Zhang, L., Luo, J. Y., Dong, H. L., Ma, Y., Zhao, X. H., Chen, B. L., Sui, N., & Zhou, Z. G. (2016). Effects of soil salinity on sucrose metabolism in cotton leaves. PLoS ONE, 11, e0156241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitman, M.G., & Läuchli, A. (2002). Global impact of salinity and agricultural ecosystems. In (Läuchli, A., Lüttge, U., Eds. pp 3–20) Salinity: Environment–Plants–Molecules, Kluwer Academic Publishers: Dordrecht, The Netherlands.

  • Poonsawat, W., Theerawitiya, C., Suwan, T., Mongkolsiriwatana, C., Samphumphuang, T., Cha-um, S., & Kridmanee, C. (2015). Regulation of some salt defense-related genes in relation to physiological and biochemical changes in three sugarcane genotypes subjected to salt stress. Protoplasm, 252, 231–243.

    Article  CAS  Google Scholar 

  • Priya, S. R. K., Bajpai, P. K., & Suresh, K. K. (2015). Stochastic models for sugarcane yield forecasting. Indian Journal of Sugarcane Technology, 30, 1–5.

    Google Scholar 

  • Qadir, M., Quill´erou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R.J., Drechsel, P., & Noble, A.D. (2014). Economics of salt-induced land degradation and restoration. Natural Resource Forum, 38, 282–295. https://doi.org/10.1111/1477-8947.12054

  • Rengasamy, P. (2010). Soil processes affecting crop production in salt affected soils. Functional Plant Biology, 37, 613–620.

    Article  Google Scholar 

  • Rizk, T. Y., & Normand, W. C. (1969). Effect of salinity on Louisiana sugarcane. International Sugar Journal, 71, 227–230.

    CAS  Google Scholar 

  • Rodrigues, N.P., Brochier, B., de Medeiros, J.K., Marczak, L.D.F. & Mercal, G.D. (2021). Phenolic profile of sugarcane juice: Effects of harvest season and processing by ohmic heating and ultrasound. Food Chemistry, 347, 129058. https://doi.org/10.1016/j.foodchem.2021.129058

  • Rozeff, N. (1995). Sugarcane and Salinity-a Review Paper. Sugarcane, 5, 8–19.

    Google Scholar 

  • Saini, S. P., Sidhu, A. S., & Singh, P. (2012). Crop yield, efficiency and economics of autumn and spring sown single bud sugarcane intercropped with pulse crops. International Journal of Forestry and Crop Improvement, 3, 60–65.

    Google Scholar 

  • Sarker U., Islam, M.T., Oba, S. (2018). Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves. PLoS ONE, 13, e0206388. https://doi.org/10.1371/journal.pone.0206388.

  • Saxena, P., Srivastava, R. P., & Sharma, M. L. (2010). Studies on salinity stress tolerance in sugarcane varieties. Sugar Tech, 12, 59–63.

    Article  CAS  Google Scholar 

  • Sharwood, R. E., Sonawane, B. V., & Ghannoum, O. (2014). Photosynthetic flexibility in maize exposed to salinity and shade. Journal of Experimental Botany, 65, 3715–3724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shomeili, M., Nabipour, M., Meskarbashee, M., & Memari, H. R. (2011). Evaluation of sugarcane (Saccharum officinarum L.) somaclonals tolerance to salinity via in vitro and in vivo. HAYATI Journal of Bioscience, 18, 91–96.

    Article  Google Scholar 

  • Shrivastava, A. K., Singh, K., Ghosha, A. K., Darash, R., Rai, R. K., Shunkla, S. P., & Singh, K. (1989). Uptake and partitioning of sodium and chloride ions in sugarcane. Sugarcane, 4, 3–6.

    Google Scholar 

  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22, 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  • Shukla, S. K., Yadav, R. L., Singh, P. N., & Singh, I. (2009). Potassium nutrition for improving stubble bud sprouting, dry matter partitioning, nutrient uptake and winter initiated sugarcane (Saccharum spp. hybrid complex) ratoon yield. European Journal of Agronomy, 30, 27–33.

    Article  CAS  Google Scholar 

  • Simões, W. L., Calgaro, M., Coelho, D. S., dos Santos, D. B., & de Souza, M. A. (2017). Growth of sugar cane varieties under salinity. SciELO—Revista Ceres, 63, 265–271.

    Article  Google Scholar 

  • Singh, P., Benbi, D.K., & Verma, G. (2021). Nutrient management impacts on nutrient use efficiency and energy, carbon, and net ecosystem economic budget of rice-wheat cropping system in north-western India. Journal of Soil Science and Plant Nutrition, 21, 559–577 https://doi.org/10.1007/s42729-020-00383-y

  • Singh, K. N., & Chatrath, R. (2001). Salinity tolerance. In M. P. Reynolds, J. I. O. Monasterio, & A. McNab (Eds.), Application of Physiology in Wheat Breeding (pp. 101–110). CIMMYT.

    Google Scholar 

  • Singh, P., & Saini, S. P. (2011a). Effect of rice straw mulching and irrigation intervals on sugarcane (Saccharum officinarum) yield and water productivity in sub-tropics of Punjab. Crop Research (An International Journal), 41, 88–93.

    Google Scholar 

  • Singh, P., & Saini, S. P. (2011b). Effect of rice straw mulching and irrigation intervals on sugarcane (Saccharum officinarum) yield and water productivity in sub-tropics of Punjab. Crop Research, 41, 88–93.

    Google Scholar 

  • Singh, P., Sharma, S., Nisar, S., & Choudhary, O. P. (2023). Structural stability and organic matter stabilization in soils: Differential impacts of soil salinity and sodicity. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-023-01136-3

    Article  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Ranventos, R. M. (1999). Analysis of total phenols other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178.

    Article  CAS  Google Scholar 

  • Smith, D. M., Inman-Bambera, N. G., & Thorburn, P. J. (2005). Growth and function of the sugarcane root system. Field Crops Research, 92, 169–183. https://doi.org/10.1016/j.fcr.2005.01.017

    Article  Google Scholar 

  • Sreenivasulu, N., Grimm, R., Wobus, U., & Weachke, W. (2000). Differential response of antioxidant comp ounds to salinity stress in salt tolerant and salt sensitive seedlings of foxtail millet (Setaria itaica). Physiologia Plantarum, 109, 435–442.

    Article  CAS  Google Scholar 

  • Subbarao, M., & Shaw, M. A. E. (1985). A review of research on sugarcane soils, of Jamaica. Proceedings of the West Indies Sugar Technologists, 2, 343–355.

    Google Scholar 

  • Sudhir, P., & Murthy, S. D. S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42, 481–486.

    Article  CAS  Google Scholar 

  • Syed, M. M., & El-Swaify, S. A. (1972). Effect of saline water irrigation on N. Co 310 and H50–7209 cultivars of sugarcane: I. Growth Parameters. Tropical Agriculture, 49, 337–346.

    Google Scholar 

  • Tahjib-UI-Arif, M., Sohag, A. A. M., Afrin, S., Bashar, K. K., Afrin, T., Mahamud, A. S. U., Polash, M. A. S., Hossain, M. T., Sohel, M. A. T., Brestic, M., & Murata, Y. (2019). Differential response of sugar beet to long-term mild to severe salinity in a soil–pot culture. Agriculture, 9, 223.

    Article  CAS  Google Scholar 

  • Tiwari, T. N., Srivastava, R. P., & Singh, G. P. (1997). Salinity Tolerance in Sugarcane Cultivars. Sugarcane, 1, 10–14.

    Google Scholar 

  • Turan, M. A., Elkarim, A. H. A., Taban, N., & Taban, S. (2009). Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. African Journal of Agricultural Research, 4, 893–897. https://doi.org/10.5897/AJAR.9000223

    Article  Google Scholar 

  • Vasantha, S., Gomathi, R., & Rakkiappan, P. (2009). Sodium content juice and jaggery quality of sugarcane genotypes under salinity. e Journal of Biological Sciences, 1, 33–38

  • Vasantha, S., Venkataramana, S., Gururaja Rao, P. N., & Gomathi, R. (2010). Long term salinity effect on growth, photosynthesis and osmotic characteristics in Sugarcane. Sugar Tech, 12, 5–8.

    Article  CAS  Google Scholar 

  • Vikas, Y. P., Bhargava, S., & Suprasanna, P. (2011). Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: Growth, osmolytes accumulation, and antioxidant defense. Journal of Plant Interaction, 6, 275–282.

    Article  Google Scholar 

  • Wahid, A., Rao, A. R., & Rasul, E. (1997). Identification of salt tolerance traits in sugarcane lines. Field Crops Research, 54, 9–17.

    Article  Google Scholar 

  • Watanabe, K., Fukuzawa, Y., Kawasaki, S., Ueno, M., & Kawamitsu, Y. (2015). Effects of potassium chloride and potassium sulfate on sucrose concentration in sugarcane juice under pot conditions. Sugar Tech, 18, 258–265. https://doi.org/10.1007/s12355-015-0392-z

    Article  CAS  Google Scholar 

  • Wattana, P., & Thitisaksakul, M. (2008). Effects of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian Journal of Experimental Biology, 46, 736–742.

    Google Scholar 

  • Whittaker, A., & Botha, F. C. (1997). Carbon partitioning during sucrose accumulation in sugarcane internodal tissue. Plant Physiology, 115, 1651–1659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedenfeld, B. (2008). Effects of irrigation water salinity and electrostatic water treatment for sugarcane production. Agricultural Water Management, 95, 85–88.

    Article  Google Scholar 

  • Wiegand, C.L., Escobar, D.E., & Lingle, S.E. (1996). Growth and yield responses of sugarcane to saline soils: In Sensing and mapping using aerial videography. Proceedings of International American Sugarcane Seminar pp. 15–17.

  • Williams, W. B., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25–30.

    Article  Google Scholar 

  • Yeo, A. R., Caporn, S. J. M., & Floers, T. J. (1985). The Effect of salinity upon photosynthesis in rice (Oryza sativa L.): Gas exchange by individual leaves in relation to their salt content. Journal of Experimental Botany, 36, 1240–1248.

    Article  CAS  Google Scholar 

  • Yin, Y. G., Kobayashi, Y., Sanuki, A., Kondo, S., Fukuda, N., Ezura, H., Sugaya, S., & Matsukura, C. (2010). Salinity induces carbohydrate accumulation and sugar regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. Journal of Experimental Botany, 61, 563–574.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avtar Singh.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Singh, P. & Mahajan, M. Net Primary Production, Biochemical Composition and Economics of Sugarcane (Saccharum officinarum) Cultivation in Saline and Non-saline Soils of South-Western Punjab, India. Int. J. Plant Prod. 17, 557–577 (2023). https://doi.org/10.1007/s42106-023-00248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-023-00248-1

Keywords

Navigation