Skip to main content

Advertisement

Log in

Effect of Future Climate Change on Wheat Yield and Water Use Efficiency Under Semi-arid Conditions as Predicted by APSIM-Wheat Model

  • Original Paper
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Any change in environmental conditions will affect crop growth and development and have an effect on crop productivity. The objective of the current study was to investigate the effect of climate change on irrigated wheat production and water use efficiency in Fars province in Iran. Accordingly, a general circulation model (HadCM3) was applied for two emission scenarios (A1B and A2) for three periods (2011–30, 2046–65 and 2080–2099) at nine locations in Fars province in central Iran. The APSIM (Agricultural Production Systems sIMulator) crop model was used to simulate growth and development of wheat as well as water use efficiency under future climate scenarios. The results indicated that the increase in CO2 concentration to 674 ppm in 2099 under A1B neutralized the negative effects of high temperature during the growing season and improved crop yield. The results indicate that, by the end of the century under the A2 emission scenario 10–15% of Fars province will have a grain yield of more than 10 t ha−1 and about 65% will have a grain yield of 8–10 t ha−1. Averaged across locations, scenarios and periods, water use efficiency increased by 3.56 kg ha−1 mm−1 in the future scenarios over baseline. Overall, the improved water use efficiency under future climate change was largely the result of a significant increase in yield (from 6989.5 kg ha−1 at baseline to 8416.5 kg ha−1 in all future scenarios) and decreased evapotranspiration (from 506.8 mm at baseline to 478 mm in all future scenarios).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

WUE:

Water use efficiency

ET:

Evapotranspiration

SRES:

The Special Report on Emission Scenarios

RCP:

Representative Concentration Pathway

LARS-WG:

Long Ashton Research Station-Weather Generator

APSIM:

Agricultural Production Systems sIMulator

ASW:

Available soil water

LAI:

Leaf area index

nRMSE:

Normalized root mean squared error

d:

Index of agreement

E:

Model efficiency

References

  • Abeysingha, N. S., Singh, M., Islam, A., & Sehgal, V. K. (2016). Climate change impacts on irrigated rice and wheat production in Gomti River basin of India: A case study. Springer Plus, 5(1), 1250–1270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bannayan, M., Mansoori, H., & Eyshi Rezaei, E. (2014). Estimating climate change, CO2 and technology development effects on wheat yield in northeast Iran. International Journal of Biometeorology, 58, 395–405.

    Article  PubMed  CAS  Google Scholar 

  • Bannayan, M., Sanjani, S., Alizadeh, A., Sadeghi Lotfabadi, S., & Mohamadian, A. (2010). Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Research, 118, 105–114.

    Article  Google Scholar 

  • Boote, K. J., Jones, J. W., & Pickering, N. B. (1996). Potential uses and limitations of crop models. Agronomy Journal, 88, 704–716.

    Article  Google Scholar 

  • Bos, M. G. (1985). Summary of ICID definitions of irrigation efficiency. ICID Bulletin, 34, 28–31.

    Google Scholar 

  • Deihimfard, R. (2011). Yield gap analysis of wheat and sugar beet in Khorasan province using modeling approach. Doctoral Dissertation. Mashhad: University of Ferdowsi Mashhad, Iran.

  • Deihimfard, R., Nassiri Mahallati, M., & Koocheki, A. (2015). Yield gap analysis in major wheat growing areas of Khorasan province, Iran, through crop modelling. Field Crops Research, 184, 28–38.

    Article  Google Scholar 

  • Ewert, F., Rounsevell, M. D. A., Reginster, I., Metzger, M. G., & Leemans, R. (2005). Future scenarios of European agricultural land use. I. Estimating changes in crop productivity. Agriculture, Ecosystems & Environment, 107, 101–116.

    Article  Google Scholar 

  • Eyni-Nargeseh, H., Deihimfard, R., Soufizadeh, S., Haghighat, M., & Nouri, O. (2016). Predicting the impacts of climate change on irrigated wheat yield in Fars province using APSIM model. Electronic Journal of Crop Production, 8(4), 203–224.

    Google Scholar 

  • Eyshi Rezaie, E., & Bannayan, M. (2012). Rainfed wheat yields under climate change in northeastern Iran. Meteorological Applications, 19, 346–354.

    Article  Google Scholar 

  • Gohari, A., Eslamian, S., Abedi-Koupaei, J., Massah Bavani, A., Wang, D., & Madani, K. (2013). Climate change impacts on crop production in Iran’s Zayandeh-Rud River Basin. Science of the Total Environmental, 442, 405–419.

    Article  CAS  Google Scholar 

  • Gregory, P. J., Ingram, J. S. I., & Brklacich, M. (2005). Climate change and food security. Philosophical Transactions of the Royal Society, 360, 2139–2148.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Summary for policy makers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report. Cambridge: Cambridge University Press.

  • Jones, P. G., & Thornton, P. K. (2003). The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environmental Change, 13, 51–59.

    Article  Google Scholar 

  • Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., et al. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267–288.

    Article  Google Scholar 

  • Khan, M. S., Coulibaly, P., & Dibike, Y. (2006). Uncertainty analysis of statistical downscaling methods. Journal of Hydrology, 319, 357–382.

    Article  Google Scholar 

  • Knutti, R., & Sedlacek, J. (2013). Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 3, 369–373.

    Article  Google Scholar 

  • Kruijt, B., Witte, J. P. M., Jacobs, C. M. J., & Kroon, T. (2008). Effects of rising atmospheric CO2 on evapotranspiration and soil moisture: A practical approach for the Netherlands. Journal of Hydrology, 349, 257–267.

    Article  Google Scholar 

  • Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7, 51–73.

    Article  CAS  Google Scholar 

  • Lv, Z., Lio, X., Cao, W., & Zhu, Y. (2013). Climate change impacts on regional winter wheat production in main wheat production regions of China. Agricultural and Forest Meteorology, 171–172, 234–248.

    Article  Google Scholar 

  • Meza, F. J., Silva, D., & Vigil, H. (2008). Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative. Agricultural Systems, 98, 21–30.

    Article  Google Scholar 

  • Mi, N., Zhang, Y. S., Ji, R. P., Cai, F., Zhang, S. J., & Zhao, X. J. (2012). Effects of climate change on water use efficiency in rain-fed plants. International Journal of Plant Production, 6(4), 513–534.

    CAS  Google Scholar 

  • Ministry of Agriculture-Jahad. (2014). Agricultural statistics, 2013–2014, Volume 1. Available at: http://www.maj.ir/Portal/Home/.pdf.

  • Mokhtassi-Bidgoli, A. (2013). Quantifying the population dynamics of flixweed (Descurainia sophia) in bread wheat under different water and nitrogen regimes. Doctoral Dissertation. Tahran: Tarbiat Modares University, Iran.

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, B., Hauser, M., Iles, C., Haque-Rimi, R., Zwiers, F. W., & Wan, H. (2015). Lengthening of the growing season in wheat and maize producing regions. Weather and Climate Extremes., 9, 47–56.

    Article  Google Scholar 

  • Naresh Kumar, S., Gvindakrishnan, P. M., Swarooparani, D. N., Nitin, Ch., Surabhi, J., & Aggarwal, P. K. (2015). Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. International Journal of Plant Production, 9(1), 151–170.

    Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part I—A discussion of principles. Journal of Hydrology, 10, 282–290.

    Article  Google Scholar 

  • Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., et al. (2008). Climate change: Can wheat beat the heat? Agriculture Ecosystems and Environmental, 126, 46–58.

    Article  Google Scholar 

  • Parry, M., Rosenzweig, C., Inglesias, A., Livermore, M., & Gischer, G. (2004). Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change, 14, 53–67.

    Article  Google Scholar 

  • Rahimi-Moghaddam, S., Kambouzia, J., & Deihimfard, R. (2018). Adaptation strategies to lessen negative impact of climate change on grain maize under hot climatic conditions: A model-based assessment. Agricultural and Forest Meteorology. https://doi.org/10.1016/j.agrformet.2018.01.032.

    Article  Google Scholar 

  • Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouffer, R. J., Sumi A., & Taylor, K. E. (2007). Climate Models and Their Evaluation. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom/New York, NY, USA: Cambridge University Press.

  • Ren, X. (2007). Agricultural vulnerability to drought in Southern Alberta: A quantitative assessment. Master Dissertation. Alberta: University of Lethbridge, Canada.

  • Semenov, M. A., & Brooks, R. J. (1999). Spatial interpolation of the LARS-WG stochastic weather generator in Great Britain. Climate Research, 11, 137–148.

    Article  Google Scholar 

  • Shahsawari, N., & Saffari, M. (2005). The effect of different levels of nitrogen on yield and yield components of wheat varieties in Kerman. Journal of Research and Development, 66, 82–87. (In Persian).

    Google Scholar 

  • Tubiello, F. N., & Ewert, F. (2002). Simulating the effects of elevated CO2 on crops: Approaches and applications for climate change. European Journal of Agronomy, 18, 57–74.

    Article  Google Scholar 

  • Utset, A., & Del Río, B. (2011). Reliability of current Spanish irrigation designs in a changed climate a case study. Journal of Agricultural Science, 149, 171–183.

    Article  Google Scholar 

  • Viglizzo, E. F., Roberto, Z. E., Lertora, F., Gay, E. L., & Bernardos, J. (1997). Climate and land-use previous change term in field-crop ecosystems of Argentina. Agriculture Ecosystems and Environmental, 66, 61–70.

    Article  Google Scholar 

  • Wallach, D., & Goffinet, B. (1987). Mean squared error of prediction in models for studying economic and agricultural systems. Biometrics, 43, 561–576.

    Article  Google Scholar 

  • Wang, Y. P., Handoko, Jr, & Rimmington, G. M. (1992). Sensitivity of wheat growth to increased air temperature for different scenarios of ambient CO2 concentration and rainfall in Victoria, Australia—A simulation study. Climate Research, 2, 131–149.

    Article  Google Scholar 

  • Wang, E., Robertson, M. J., Hammer, G. L., Carberry, P. S., Holzworth, D., Meinke, H., et al. (2002). Development of generic crop model template in the cropping system model APSIM. European Journal of Agronomy, 18, 121–140.

    Article  Google Scholar 

  • Wang, J., Wang, E., & Liu, D. L. (2011). Modelling the impact of climate change on wheat yield and field water balance over the Murry-Darling Basin in Australia. Theoretical and Applied Climatology, 104, 285–300.

    Article  Google Scholar 

  • Wang, J., Wang, E., Luo, Q., & Kirby, M. (2009). Modelling the sensitivity of wheat growth and water balance to climate change in Southeast Australia. Climate Change, 96(1–2), 79–96.

    Article  CAS  Google Scholar 

  • Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63, 1309–1313.

    Article  Google Scholar 

  • Xu, X., Wang, L., Sun, D., Liu, L., & Banson, K. E. (2017). The impact of climate change on yield potential of maize across China. International Journal of Plant Production., 11(1), 47–64.

    Google Scholar 

  • Yang, Y., Liu, D. L., Rajin Anwar, M., Leary, G., Macadam, I., & Yang, Y. (2016). Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: Sensitivity of future changes to projected climate changes and soil type. Theoretical and Applied Climatology, 123, 565–579.

    Article  Google Scholar 

Download references

Acknowledgement

The project was funded by the Deputy of Research Affairs, Shahid Beheshti University, G.C. (Project No. /600/850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Deihimfard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deihimfard, R., Eyni-Nargeseh, H. & Mokhtassi-Bidgoli, A. Effect of Future Climate Change on Wheat Yield and Water Use Efficiency Under Semi-arid Conditions as Predicted by APSIM-Wheat Model. Int. J. Plant Prod. 12, 115–125 (2018). https://doi.org/10.1007/s42106-018-0012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-018-0012-4

Keywords

Navigation