Skip to main content
Log in

Multi-physics Peridynamic Modeling of Damage Processes in Protective Coatings

  • Original Articles
  • Published:
Journal of Peridynamics and Nonlocal Modeling Aims and scope Submit manuscript

Abstract

Protective coatings can revolutionize the aerospace industry by providing a way to build a fuel-efficient and low-emission gas turbine engine operating at elevated temperature. Currently, significant challenges persist in the multi-physics modeling of damage processes in protective coatings exposed to the hot corrosive environment of gas turbine engine. Examples of such detrimental processes include an interface damage between different material layers forming protective coating, a formation of the through-the-thickness vertical cracks, a diffusion of oxygen and moisture through those cracks, an oxidation, and a delamination. In this paper, a feasibility of a multi-physics peridynamic model to provide insight to these detrimental processes has been demonstrated. Three-dimensional peridynamic equations which are valid everywhere, including dynamically evolving discontinuities, have been presented. Validation and demonstration have been shown for conduction heat transfer, reactive oxidation, and delamination of protective coating with a composition borrowed from the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Graver B, Zhang K, Rutherford D (2019) CO2 emissions from commercial aviation, 2018, ICCT WORKING PAPER 2019-16, pp 1–13

  2. Dever JA, Nathal MV, DiCarlo JA (2013) Research on high-temperature aerospace materials at NASA Glenn Research Center. J Aerosp Eng 26(2):500–514

    Article  Google Scholar 

  3. Vavourakis V, Loukidis D, Charmpis DC, Papanastasiou P (2013) Assessment of remeshing and remapping strategies for large deformation elastoplastic finite element analysis. Comput Struct 114:133–146

    Article  Google Scholar 

  4. Cheng H, Zhou XP (2015) A multi-dimensional space method for dynamic cracks problems using implicit time scheme in the framework of the extended finite element method. Int J Damage Mech 24(6):859–890

    Article  Google Scholar 

  5. Vigueras G, Sket F, Samaniego C, Wu L, Noels L, Tjahjanto D, Casoni E, Houzeaux G, Makradi A, Molina-Aldareguia JM, Vazquez M, Jerusalem A (2015) An XFEM/CZM implementation for massively parallel simulations of composites fracture. Compos Struct 125:542–557

    Article  Google Scholar 

  6. Wu S, Chen Q, Liu K, Luo N (2014) A front tracking algorithm for hypervelocity impact problems with crack growth, large deformations and high strain rates. Int J Impact Eng 74:145–156

    Article  Google Scholar 

  7. Li C, Wang CB, Qin H (2015) Novel adaptive SPH with geometric subdivision for brittle fracture animation of anisotropic materials. Vis Comput 31(6–8):937–946

    Article  Google Scholar 

  8. Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93(1):13–37

    Article  MathSciNet  Google Scholar 

  9. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  Google Scholar 

  10. Silling SA (2017) Stability of peridynamic correspondence material models and their particle discretizations. Comput Methods Appl Mech Eng 322:42–57

    Article  MathSciNet  Google Scholar 

  11. Madenci E, Barut A, Futch M (2016) Peridynamic differential operator and its applications. Comput Methods Appl Mech Eng 304:408–451

    Article  MathSciNet  Google Scholar 

  12. Littlewood DJ, Silling SA, Mitchell JA, Seleson PD, Bond SD, Parks ML, Turner DZ, Burnett DJ, Ostien J, Gunzburger M (2015) Strong local-nonlocal coupling for integrated fracture modeling, SAND2015–7998 report

  13. Zhao J, Chen Z, Mehrmashhadi J, Bobaru F (2018) Construction of a peridynamic model for transient advection-diffusion problems. Int J Heat Mass Transf 126:1253–1266

    Article  Google Scholar 

  14. Seleson P, Littlewood DJ (2016) Convergence studies in meshfree peridynamic simulations. Comput Math Appl 71(11):2432–2448

    Article  MathSciNet  Google Scholar 

  15. Madenci E, Diyaroglu C, Anicode V, Silling S Peridynamic modeling of drilling process in polymer matrix composites, AIAA Scitech 2019 Forum 2019

  16. Vasenkov AV (2019) Peridynamic modeling: an alternative approach to analyzing material failure, Digital Edition of Aerospace & Defense Technology (August)

  17. Parks ML, Littlewood DJ, Mitchell JA, Silling SA (2012) Peridigm users’ guide, SANDIA REPORT 2012–7800

  18. Guski V, Verestek W, Oterkus E, Schmauder S (2020) Microstructural investigation of plasma sprayed ceramic coatings using peridynamics. J Mech 36(2):183–196

    Article  Google Scholar 

  19. Bobaru F, Duangpanya M (2012) A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J Comput Phys 231(7):2764–2785

    Article  MathSciNet  Google Scholar 

  20. Jafarzadeh S, Chen Z, Li S, Bobaru F (2019) A peridynamic mechano-chemical damage model for stress-assisted corrosion. Electrochim Acta 323:134795

    Article  Google Scholar 

  21. Madenci E, Oterkus S (2017) Peridynamic modeling of thermo-oxidative damage evolution in a composite Lamina, 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, (AIAA 2017–0197), pp 1–9

  22. Hu YL, De Carvalho NV, Madenci E (2015) Peridynamic modeling of delamination growth in composite laminates. Compos Struct 132:610–620

    Article  Google Scholar 

  23. Heroux MA, Willenbring JM (2012) A new overview of the Trilinos project. Sci Program 20:83–88

    Google Scholar 

  24. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  Google Scholar 

  25. Warren TL, Silling SA, Askari A, Weckner O, Epton MA, Xu J (2009) A non-ordinary state-based peridynamic method to model solid material deformation and fracture. Int J Solids Struct 46(5):1186–1195

    Article  Google Scholar 

  26. Silling S, Askari A (2014) Peridynamic model for fatigue cracks. In: Bajaj A, Zavattieri P, Koslowski M, Siegmund T (eds) Proceedings of the Society of Engineering Science 51st annual technical meeting, October 1–3, 2014. Purdue University Libraries Scholarly Publishing Services, West Lafayette

    Google Scholar 

  27. Diyaroglu C, Oterkus S, Oterkus E, Madenci E (2017) Peridynamic modeling of diffusion by using finite-element analysis. IEEE Trans Compon Packag Manuf Technol 7(11):1823–1831

    Article  Google Scholar 

  28. Bobaru F, Duangpanya M (2010) The peridynamic formulation for transient heat conduction. Int J Heat Mass Transf 53(19–20):4047–4059

    Article  Google Scholar 

  29. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782

    Article  MathSciNet  Google Scholar 

  30. Richards BT, Young KA, de Francqueville F, Sehr S, Begley MR, Wadley HNG (2016) Response of ytterbium disilicate–silicon environmental barrier coatings to thermal cycling in water vapor. Acta Mater 106:1–14

    Article  Google Scholar 

  31. Itoh Y, Nozaki T (1985) Solubility and diffusion coefficient of oxygen in silicon. Jpn J Appl Phys 24(Part 1, 3):279–284

    Article  Google Scholar 

  32. Deal BE, Grove AS (1965) General relationship for the thermal oxidation of silicon. J Appl Phys 36(12):3770–3778

    Article  Google Scholar 

  33. Richards BT, Sehr S, de Franqueville F, Begley MR, Wadley HNG (2016) Fracture mechanisms of ytterbium monosilicate environmental barrier coatings during cyclic thermal exposure. Acta Mater 103:448–460

    Article  Google Scholar 

  34. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1):229–244

    Article  Google Scholar 

  35. (2001) Silicon carbide (SiC) properties and applications, https://www.azom.com/. Accessed 2 Oct 2019

  36. Vasenkov AV (2017) Practical peridynamic modeling for damage and failure prediction, Proceedings of CAMX— The Composites and Advanced Materials Expo, co-produced by ACMA and SAMPE, TP17–0013, pp 1–13

Download references

Funding

This work was supported by the Department of Energy under the DE-SC0019555 award. The use of computing facilities in the National Energy Research Scientific Computing Center at the Office of Science in the US Department of Energy is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex V. Vasenkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasenkov, A.V. Multi-physics Peridynamic Modeling of Damage Processes in Protective Coatings. J Peridyn Nonlocal Model 3, 167–183 (2021). https://doi.org/10.1007/s42102-020-00046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42102-020-00046-7

Keywords

Navigation