Skip to main content

Advertisement

Log in

Adropin may regulate corpus luteum formation and its function in adult mouse ovary

  • Original Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Background

Adropin, a unique peptide hormone, has been associated with the regulation of several physiological processes, including glucose homeostasis, fatty acid metabolism, and neovascularization. However, its possible role in ovarian function is not understood. Our objective was to examine the expression of adropin and its putative receptor, GPR19, in the ovaries of mice at various phases of the estrous cycle.

Methods

Immunohistochemistry and western blot analysis were performed to explore the localization and changes in expression of adropin and GPR19 in the ovaries during different phases of the estrous cycle in mice. Hormonal assays were performed with ELISA. An in vitro study was performed to examine the direct effect of adropin (10, 100 ng/ml) on ovarian function.

Results

A western blot study showed that adropin and GPR19 proteins were maximum during the estrus phase of the estrous cycle. Interestingly, adropin and GPR19 displayed intense immunoreactivity in granulosa cells of large antral follicles and corpus luteum. This suggested the possible involvement of adropin in corpus luteum formation. Adropin treatment stimulated progesterone synthesis by increasing GPR19, StAR, CYP11A1, and 3β-HSD expressions, while it decreased estrogen synthesis by inhibiting 17β-HSD and aromatase protein expressions. Moreover, adropin treatment upregulated the cell cycle arrest-CDK inhibitor 1B (p27kip1), pERK1/2, and angiogenic protein (EG VEGF) that are involved in the process of luteinization.

Conclusions

Adropin GPR19 signaling promotes the synthesis of progesterone and upregulates the expression of p27kip1, EG VEGF, and erk1/2, resulting in cell cycle arrest and neovascularization, which ultimately leads to corpus luteum formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. de Oliveira dos Santos AR, de Oliveira Zanuso B, VFB M, Barbalho SM, Santos Bueno PC, UAP F et al (2021) Adipokines, myokines, and hepatokines: crosstalk and metabolic repercussions. Int J Mol Sci 22(5):2639. https://doi.org/10.3390/ijms22052639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V et al (2007) Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab 5(6):415–425. https://doi.org/10.1016/j.cmet.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  3. Owen BM, Bookout AL, Ding X, Lin VY, Atkin SD, Gautron L et al (2013) FGF21 contributes to neuroendocrine control of female reproduction. Nat Med 19(9):1153–1156. https://doi.org/10.1038/nm.3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dietzel E, Wessling J, Floehr J, Schäfer C, Ensslen S, Denecke B et al (2013) Fetuin-B, a liver-derived plasma protein is essential for fertilization. Dev Cell 25(1):106–112. https://doi.org/10.1016/j.devcel.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  5. Dietzel E, Floehr J, Jahnen-Dechent W (2016) The biological role of fetuin-B in female reproduction. Ann Reprod Med Treat 1(1):1003

    Google Scholar 

  6. Hammond GL (2011) Diverse roles for sex hormone-binding globulin in reproduction. Biol Reprod 85(3):431–441. https://doi.org/10.1095/biolreprod.111.092593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar KG, Trevaskis JL, Lam DD, Sutton GM, Koza RA, Chouljenko VN et al (2008) Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab 8(6):468–481. https://doi.org/10.1016/j.cmet.2008.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aydin S, Kuloglu T, Aydin S, Eren MN, Yilmaz M, Kalayci M et al (2013) Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes. Mol Cell Biochem 380(1-2):73–81. https://doi.org/10.1007/s11010-013-1660-4

    Article  CAS  PubMed  Google Scholar 

  9. Stein LM, Yosten GL, Samson WK (2016) Adropin acts in brain to inhibit water drinking: potential interaction with the orphan G protein-coupled receptor, GPR19. Am J Physiol Regul Integr Comp Physiol 310(6):R476–R480. https://doi.org/10.1152/ajpregu.00511.2015

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rao A (1864) Herr DR (2017) G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. Biochim Biophys Acta Mol Cell Res 7:1318–1327. https://doi.org/10.1016/j.bbamcr.2017.05.001

    Article  CAS  Google Scholar 

  11. Wong CM, Wang Y, Lee JTH, Huang Z, Wu D, Xu A et al (2014) Adropin is a brain membrane-bound protein regulating physical activity via the NB-3/Notch signaling pathway in mice. J Biol Chem 289(37):25976–25986. https://doi.org/10.1074/jbc.M114.576058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ganesh Kumar K, Zhang J, Gao S, Rossi J, McGuinness OP, Halem HH et al (2012) Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring) 20(7):1394–1402

    Article  CAS  PubMed  Google Scholar 

  13. Ghoshal S, Stevens JR, Billon C, Girardet C, Sitaula S, Leon AS et al (2018) Adropin: an endocrine link between the biological clock and cholesterol homeostasis. Mol Metab 8:51–64. https://doi.org/10.1016/j.molmet.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  14. Gao S, McMillan RP, Zhu Q, Lopaschuk GD, Hulver MW, Butler AA (2015) Therapeutic effects of adropin on glucose tolerance and substrate utilization in diet-induced obese mice with insulin resistance. Mol Metab 4(4):310–324. https://doi.org/10.1016/j.molmet.2015.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta M et al (2010) Adropin is a novel regulator of endothelial function. Circulation 122((11_suppl_1)):S185–S192. https://doi.org/10.1161/CIRCULATIONAHA.109.931782

    Article  CAS  PubMed  Google Scholar 

  16. Celik E, Yilmaz E, Celik O, Ulas M, Turkcuoglu I, Karaer A et al (2013) Maternal and fetal adropin levels in gestational diabetes mellitus. J Perinat Med 41(4):375–380. https://doi.org/10.1515/jpm-2012-0227

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Xue H, Fang W, Chen K, Chen S, Yang W et al (2019) Adropin protects against liver injury in nonalcoholic steatohepatitis via the Nrf2 mediated antioxidant capacity. Redox Biol 21:101068. https://doi.org/10.1016/j.redox.2018.101068

    Article  CAS  PubMed  Google Scholar 

  18. Yu HY, Zhao P, Wu MC, Liu J, Yin W (2014) Serum adropin levels are decreased in patients with acute myocardial infarction. Regul Pept 190-191:46–49. https://doi.org/10.1016/j.regpep.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  19. Yildirim B, Celik O, Aydin S (2014) Adropin: a key component and potential gatekeeper of metabolic disturbances in policystic ovarian syndrome. Clin Exp Obstet Gynecol 41(3):310–312. https://doi.org/10.12891/ceog16522014

    Article  CAS  PubMed  Google Scholar 

  20. Nergiz S, Altinkaya SO, Kurt Ömürlü İ, Yuksel H, Küçük M, Demircan Sezer S (2015) Circulating adropin levels in patients with endometrium cancer. Gynecol Endocrinol 31(9):730–735. https://doi.org/10.3109/09513590.2015.1065480

    Article  CAS  PubMed  Google Scholar 

  21. Celik A, Balin M, Kobat MA, Erdem K, Baydas A, Bulut M et al (2013) Deficiency of a new protein associated with cardiac syndrome X; called adropin. Cardiovasc Ther 31(3):174–178. https://doi.org/10.1111/1755-5922.12025

    Article  CAS  PubMed  Google Scholar 

  22. Sato K, Yamashita T, Shirai R, Shibata K, Okano T, Yamaguchi M et al (2018) Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. Int J Mol Sci 19(5):1293. https://doi.org/10.3390/ijms19051293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sen T, Saha P, Gupta R, Foley LM, Jiang T, Abakumova OS et al (2020) Aberrant ER stress induced neuronal-IFNβ elicits white matter injury due to microglial activation and T-cell infiltration after TBI. J Neurosci 40(2):424–446. https://doi.org/10.1523/JNEUROSCI.0718-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maurya S, Singh A (2022) Asprosin modulates testicular functions during ageing in mice. Gen Comp Endocrinol 323-324:114036. https://doi.org/10.1016/j.ygcen.2022.114036

    Article  CAS  PubMed  Google Scholar 

  25. Singh A, Krishna A (2012) Localization of adiponectin and its receptor and its possible roles in the ovary of a vespertilionid bat Scotophilus heathi. Gen Comp Endocrinol 176(2):240–251. https://doi.org/10.1016/j.ygcen.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  26. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem 72(1-2):248–254

    Article  CAS  Google Scholar 

  27. Khajehnasiri N, Dehkordi MB, Amini-Khoei H, Mohammadabadi MSM, Sadeghian R (2021) Effect of exercise intensity and duration on the levels of stress hormones and hypothalamic-pituitary–gonadal axis in adult male rats: an experimental study. Hormones 20(3):483–490

    Article  PubMed  Google Scholar 

  28. Fitz TA, Mayan MH, Sawyer HR, Niswender GD (1982) Characterization of two steroidogenic cell types in the ovine corpus luteum. Biol Reprod 27(3):703–711. https://doi.org/10.1095/biolreprod27.3.703

    Article  CAS  PubMed  Google Scholar 

  29. Meyer GT, McGeachie JK (1988) Angiogenesis in the developing corpus luteum of pregnant rats: a stereologic and autoradiographic study. Anat Rec 222(1):18–25. https://doi.org/10.1002/ar.1092220105

    Article  CAS  PubMed  Google Scholar 

  30. Jablonka-Shariff A, Grazul-Bilska AT, Redmer DA, Reynolds LP (1993) Growth and cellular proliferation of ovine corpora lutea throughout the estrous cycle. Endocrinology 133(4):1871–1879. https://doi.org/10.1210/endo.133.4.8404629

    Article  CAS  PubMed  Google Scholar 

  31. Zheng J, Fricke PM, Reynolds LP, Redmer DA (1994) Evaluation of growth, cell proliferation, and cell death in bovine corpora lutea throughout the estrous cycle. Biol Reprod 51(4):623–632

    Article  CAS  PubMed  Google Scholar 

  32. Dickson SE, Fraser HM (2000) Inhibition of early luteal angiogenesis by gonadotropin-releasing hormone antagonist treatment in the primate. J Clin Endocrinol Metab 85(6):2339–2344. https://doi.org/10.1210/jcem.85.6.6621

    Article  CAS  PubMed  Google Scholar 

  33. Rodger FE, Young FM, Fraser HM, Illingworth PJ (1997) Endothelial cell proliferation follows the mid-cycle luteinizing hormone surge, but not human chorionic gonadotrophin rescue, in the human corpus luteum. Hum Reprod 12(8):1723–1729. https://doi.org/10.1093/humrep/12.8.1723

    Article  CAS  PubMed  Google Scholar 

  34. Gaytán F, Morales C, García-Pardo L, Reymundo C, Bellido C, Sánchez-Criado JE (1998) Macrophages, cell proliferation, and cell death in the human menstrual corpus luteum. Biol Reprod 59(2):417–425. https://doi.org/10.1095/biolreprod59.2.417

    Article  PubMed  Google Scholar 

  35. Devoto L, Kohen P, Muñoz A, Strauss JF III (2009) Human corpus luteum physiology and the luteal-phase dysfunction associated with ovarian stimulation. Reprod Biomed Online 18(Suppl 2):19–24. https://doi.org/10.1016/s1472-6483(10)60444-0

    Article  PubMed  Google Scholar 

  36. Lu E, Li C, Wang J, Zhang C (2019) Inflammation and angiogenesis in the corpus luteum. J Obstet Gynaecol Res 45(10):1967–1974. https://doi.org/10.1111/jog.14076

    Article  PubMed  Google Scholar 

  37. Fraser HM, Wulff C (2003) Angiogenesis in the corpus luteum. Reprod Biol Endocrinol 1(1):88. https://doi.org/10.1186/1477-7827-1-88

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wiltbank MC, Dysko RC, Gallagher KP, Keyes PL (1988) Relationship between blood flow and steroidogenesis in the rabbit corpus luteum. J Reprod Fertil 84(2):513–520. https://doi.org/10.1530/jrf.0.0840513

    Article  CAS  PubMed  Google Scholar 

  39. Niswender GD, Moore RT, Akbar AM, Nett TM, Diekman MA (1975) Flow of blood to the ovaries of ewes throughout the estrous cycle. Biol Reprod 13(4):381–388. https://doi.org/10.1095/biolreprod13.4.381

    Article  CAS  PubMed  Google Scholar 

  40. Ford SP, Christenson RK, Chenault JR (1979) Patterns of blood flow to the uterus and ovaries of ewes during the period of luteal regression. J Anim Sci 49(6):1510–1516. https://doi.org/10.2527/jas1979.4961510x

    Article  CAS  PubMed  Google Scholar 

  41. Janson PO, Damber JE, Axén C (1981) Luteal blood flow and progesterone secretion in pseudopregnant rabbits. J Reprod Fertil 63(2):491–497. https://doi.org/10.1530/jrf.0.0630491

    Article  CAS  PubMed  Google Scholar 

  42. Magness RR, Christenson RK, Ford SP (1983) Ovarian blood flow throughout the estrous cycle and early pregnancy in sows. Biol Reprod 28(5):1090–1096. https://doi.org/10.1095/biolreprod28.5.1090

    Article  CAS  PubMed  Google Scholar 

  43. Green C, Chatterjee R, McGarrigle HH, Ahmed F, Thomas NS (2000) p107 is active in the nucleolus in non-dividing human granulosa lutein cells. J Mol Endocrinol 25(3):275–286. https://doi.org/10.1677/jme.0.0250275

    Article  CAS  PubMed  Google Scholar 

  44. Jirawatnotai S, Moons DS, Stocco CO, Franks R, Hales DB, Gibori G, Kiyokawa H (2003) The cyclin-dependent kinase inhibitors p27Kip1 and p21Cip1 cooperate to restrict proliferative life span in differentiating ovarian cells. J Biol Chem 278(19):17021–17027. https://doi.org/10.1074/jbc.M301206200

    Article  CAS  PubMed  Google Scholar 

  45. Samson M, Peale FV Jr, Frantz G, Rioux-Leclercq N, Rajpert-De Meyts E, Ferrara N (2004) Human endocrine gland-derived vascular endothelial growth factor: expression early in development and in Leydig cell tumors suggests roles in normal and pathological testis angiogenesis. J Clin Endocrinol Metab 89(8):4078–4088. https://doi.org/10.1210/jc.2003-032024

    Article  CAS  PubMed  Google Scholar 

  46. Kisliouk T, Levy N, Hurwitz A, Meidan R (2003) Presence and regulation of endocrine gland vascular endothelial growth factor/prokineticin-1 and its receptors in ovarian cells. J Clin Endocrinol Metab 88(8):3700–3707. https://doi.org/10.1210/jc.2003-030492

    Article  CAS  PubMed  Google Scholar 

  47. Hoffmann P, Feige JJ, Alfaidy N (2007) Placental expression of EG VEGF and its receptors PKR1 (prokineticin receptor-1) and PKR2 throughout mouse gestation. Placenta 28(10):1049–1058. https://doi.org/10.1016/j.placenta.2007.03.008

    Article  CAS  PubMed  Google Scholar 

  48. Heck D, Wortmann S, Kraus L, Ronchi CL, Sinnott RO, Fassnacht M et al (2015) Role of endocrine gland-derived vascular endothelial growth factor (EG VEGF) and its receptors in adrenocortical tumors. Horm Cancer 6(5-6):225–236. https://doi.org/10.1007/s12672-015-0236-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brouillet S, Hoffmann P, Benharouga M, Salomon A, Schaal JP, Feige JJ et al (2010) Molecular characterization of EG-VEGF-mediated angiogenesis: differential effects on microvascular and macrovascular endothelial cells. Mol Biol Cell 21(16):2832–2843. https://doi.org/10.1091/mbc.E10-01-0059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin R, LeCouter J, Kowalski J, Ferrara N (2002) Characterization of endocrine gland-derived vascular endothelial growth factor signaling in adrenal cortex capillary endothelial cells. J Biol Chem 277(10):8724–8729

    Article  CAS  PubMed  Google Scholar 

  51. Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28(1):117–149. https://doi.org/10.1210/er.2006-0022

    Article  CAS  PubMed  Google Scholar 

  52. Topuz M, Celik A, Aslantas T, Demir AK, Aydin S, Aydin S (2013) Plasma adropin levels predict endothelial dysfunction like flow-mediated dilatation in patients with type 2 diabetes mellitus. J Investig Med 61(8):1161–1164. https://doi.org/10.2310/JIM.0000000000000003

    Article  CAS  PubMed  Google Scholar 

  53. Jasaszwili M, Wojciechowicz T, Billert M, Strowski MZ, Nowak KW, Skrzypski M (2019) Effects of adropin on proliferation and differentiation of 3T3-L1 cells and rat primary preadipocytes. Molecul cellular endocrinol 496:110532

    Article  CAS  Google Scholar 

  54. Mitchell M, Armstrong DT, Robker RL, Norman RJ (2005) Adipokines: implications for female fertility and obesity. Reproduction 130(5):583–597

    Article  CAS  PubMed  Google Scholar 

  55. Ledoux S, Campos DB, Lopes FL, Dobias-Goff M, Palin MF, Murphy BD (2006) Adiponectin induces periovulatory changes in ovarian follicular cells. Endocrinology 147(11):5178–5186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Shweta Maurya and Shashank Tripathi express sincere gratitude to CSIR, New Delhi, India, for providing fellowship as Junior and Senior Research Fellow. We also warmly thank the Department of Science and Technology-Funds for improvement of S & T infrastructure and the University Grant Commission-Centre of Advanced Study program to Department of Zoology, BHU, Varanasi, India. We are also most grateful to Mr. Sanjiv Singh, Department of Statistics, BHU, Varanasi, India for his statistical assistance.

Funding

This work was financially supported by DST-SERB (File no. ECR/2016/001883/LS), New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceptualized and designed the experiments. Shweta Maurya and Shashank Tripathi carried out all the experiments and prepared the figures and graphs. All authors analyzed the data. Shweta Maurya wrote the manuscript. Ajit Singh reviewed the work and edited the manuscript. All the authors read and agreed to publish the final manuscript.

Corresponding author

Correspondence to Ajit Singh.

Ethics declarations

Ethics approval and consent to participate

The Institutional Animal Ethical Committee (IAEC), Institute of Science, Banaras Hindu University authorized all experimental techniques, including animals (Mus musculus), in accordance with the ethical standards adopted by the Committee for the purpose of control and supervision of experiments on animals (CPCSEA), Government of India (BHU/ DoZ/ IAEC/2019-20/034).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S., Tripathi, S., Arora, T. et al. Adropin may regulate corpus luteum formation and its function in adult mouse ovary. Hormones 22, 725–739 (2023). https://doi.org/10.1007/s42000-023-00476-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-023-00476-0

Keywords

Navigation