Skip to main content
Log in

Continuous milli-scale reaction calorimeter for direct scale-up of flow chemistry

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Reaction calorimetry of flow processes is important for scale-up and safety in flow chemistry. Due to the increasing number of flow processes, corresponding flow calorimeters are required as an alternative or addition to high-precision batch calorimeters. In this work, a milli-scale isoperibol continuous flow calorimeter was used to measure the heat of reaction based on an elaborated heat transfer model. This allows for reaction calorimetry without calibration. The model was tested with a selective, fast and exothermic neutralization reaction of acetic acid and sodium hydroxide at different flow rates, concentrations and viscosities. Deviations of the mean heats of reaction from the literature values were only about 2%. The calorimetric data can further be used for direct scale-up with tube bundle mixer heat exchangers having similar heat transfer characteristics. In addition, a reaction screening at different flow rates allows to find the maximum temperature and maximum heat generation. This data is useful in safety analyses of continuous processes. For these reasons, continuous reaction calorimetry provides a practical scale-up tool for flow processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

At Fluitec for the next 10 years.

Code availability

At Fluitec.

Abbreviations

AcOH:

Acetic acid

H2O:

Water

h. visc.:

High viscous

HTM:

Heat transfer medium

M:

Molar

NaOAc:

Sodium acetate

NaOH:

Sodium hydroxide

PFR:

Plug flow reactor

SD:

Standard deviation

VDI:

Verein Deutscher Ingenieure

α :

Heat transfer coefficient [W m2 K1]

α inside, i :

Heat transfer coefficient in the tube [W m2 K1]

α outside, a :

Heat transfer coefficient in the shell [W m2 K1]

β :

Flow factor [ml min1 °C]

η :

Viscosity [Pa s]

η W :

Viscosity at the wall [Pa s]

λ :

Thermal conductivity [W m1 K1]

λ W :

Thermal conductivity of the wall [W m1 K1]

ρ :

Density [kg m3]

τ :

Residence time [s]

A a :

Heat transfer surface at the outside of the tube [m2]

A i :

Heat transfer surface at the inside of the tube [m2]

A m :

Mean heat transfer surface [m2]

c A,0 :

Initial concentration of the limiting reactant A [mol m3]

c p :

Specific heat capacity [J kg1 K1]

D :

Diameter [m]

D i :

Inner diameter [m]

ΔH r :

Reaction enthalpy [J mol1]

k :

Overall heat transfer coefficient [W m2 K1]

L :

Length [m]

\(\dot{\textit{m}}\) :

Mass flow rate [kg s1]

Q :

Heat [J]

\({\dot{\textit{Q}}}_{\text{ex}}\) :

Exchanged heat flow [W]

\({\dot{\textit{Q}}}_{\text{nex}}\) :

Not exchanged heat flow [W]

Q r :

Specific heat of reaction [J kg1]

\({\dot{\textit{Q}}}_{\text{r}}\) :

Heat flow of reaction [W]

s :

Wall thickness [m]

t :

Time [s]

t 1/2 :

Reaction half-life [s]

t mix :

Mixing time [s]

T :

Temperature [K]

ΔT :

Temperature difference [K]

ΔT ad :

Adiabatic temperature rise [K]

V :

Volume [m3]

V void :

Void volume [m3]

\(\dot{\textit{V}}\) :

Volume flow rate [m3 s1]

w :

Flow velocity [m s−1]

Nu :

Nusselt number [-]

Nu inside :

Nusselt number in the tube [-]

Nu outside :

Nusselt number in the shell [-]

Pe :

Péclet number [-]

Pr :

Prandtl number [-]

Pr W :

Prandtl number at the wall [-]

Re :

Reynolds number [-]

References

  1. Zogg A, Stoessel F, Fischer U, Hungerbühler K (2004) Isothermal reaction calorimetry as a tool for kinetic analysis. Thermochim Acta 419:1–17. https://doi.org/10.1016/j.tca.2004.01.015

    Article  CAS  Google Scholar 

  2. Sarge SM, Höhne GWH, Hemminger W (2014) Calorimetry: fundamentals, instrumentation and applications. Wiley, Weinheim

    Book  Google Scholar 

  3. Antes J, Gegenheimer M, Krause H, Löbbecke S, Wirker R, Knorr A (2008) Ortsaufgelöste Reaktionskalorimetrie in mikrostrukturierten Reaktoren. Chem Ing Tech 80:1270–1270. https://doi.org/10.1002/cite.200750657

    Article  CAS  Google Scholar 

  4. Reichmann F, Millhoff S, Jirmann Y, Kockmann N (2017) Reaction calorimetry for exothermic reactions in plate-type microreactors using seebeck elements. Chem Eng Technol 40:2144–2154. https://doi.org/10.1002/ceat.201700419

    Article  CAS  Google Scholar 

  5. Frede TA, Dietz M, Kockmann N (2021) Software-guided microscale flow calorimeter for efficient acquisition of thermokinetic data. J Flow Chem. https://doi.org/10.1007/s41981-021-00145-6

    Article  Google Scholar 

  6. Glotz G, Knoechel DJ, Podmore P, Gruber-Woelfler H, Kappe CO (2017) Reaction calorimetry in microreactor environments—measuring heat of reaction by isothermal heat flux calorimetry. Org Process Res Dev 21:763–770. https://doi.org/10.1021/acs.oprd.7b00092

    Article  CAS  Google Scholar 

  7. Maier MC, Leitner M, Kappe CO, Gruber-Woelfler H (2020) A modular 3D printed isothermal heat flow calorimeter for reaction calorimetry in continuous flow. React Chem Eng 5:1410–1420. https://doi.org/10.1039/d0re00122h

    Article  CAS  Google Scholar 

  8. Zhang C, Zhang J, Luo G (2020) Kinetics determination of fast exothermic reactions with infrared thermography in a microreactor. J Flow Chem 10:219–226. https://doi.org/10.1007/s41981-019-00071-8

    Article  CAS  Google Scholar 

  9. Ładosz A, Kuhnle C, Jensen KF (2020) Characterization of reaction enthalpy and kinetics in a microscale flow platform. React Chem Eng 5:2115–2122. https://doi.org/10.1039/d0re00304b

    Article  CAS  Google Scholar 

  10. Laudadio G, Gemoets HPL, Hessel V, Noël T (2017) Flow synthesis of diaryliodonium triflates. J Org Chem 82:11735–11741. https://doi.org/10.1021/acs.joc.7b01346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dong Z, Wen Z, Zhao F, Kuhn S, Noël T (2021) Scale-up of micro- and milli-reactors: an overview of strategies, design principles and applications. Chem Eng Sci 10:100097. https://doi.org/10.1016/j.cesx.2021.100097

    Article  CAS  Google Scholar 

  12. Mortzfeld F, Polenk J, Guélat B, Venturoni F, Schenkel B, Filipponi P (2020) Reaction calorimetry in continuous flow mode: a new approach for the thermal characterization of high energetic and fast reactions. Org Process Res Dev 24:2004–2016. https://doi.org/10.1021/acs.oprd.0c00117

    Article  CAS  Google Scholar 

  13. Georg A, Däscher MB (2005) Chemische Reaktionen in Rohrreaktoren und statischen Mischern—Homogenität, Verweilzeitverhalten, Wärmeabfuhr, Auslegung, Anwendungsbeispiele. Chem Ing Tech 77:681–693. https://doi.org/10.1002/cite.200407095

    Article  CAS  Google Scholar 

  14. Kockmann N, Thenée P, Fleischer-Trebes C, Laudadio G, Noël T (2017) Safety assessment in development and operation of modular continuous-flow processes. React Chem Eng 2:258–280. https://doi.org/10.1039/C7RE00021A

    Article  CAS  Google Scholar 

  15. Georg A, Moser M, Merkel N, Rosasco E, Andreoli S, Hodler M (2020) Kontinuierliches Reaktionskalorimeter. EU Patent 20183838.0 - 1001

  16. Eigen M, De Maeyer L (1955) Untersuchungen über die Kinetik der Neutralisation. I Z für Elektrochem 59:986–993. https://doi.org/10.1002/bbpc.19550591020

    Article  CAS  Google Scholar 

  17. Roberge DM, Ducry L, Bieler N, Cretton P, Zimmermann B (2005) Microreactor technology: a revolution for the fine chemical and pharmaceutical industries? Chem Eng Technol 28:318–323. https://doi.org/10.1002/ceat.200407128

    Article  CAS  Google Scholar 

  18. Verein Deutscher Ingenieure (2006) VDI-Wärmeatlas, 10th edn. Springer, Berlin

    Google Scholar 

  19. Riedel E, Meyer H-J (2013) Allgemeine und anorganische Chemie, 11th edn. De Gruyter, Berlin

    Book  Google Scholar 

  20. Zlokarnik M (2002) Scale-up in chemical engineering. Wiley, Weinheim

    Book  Google Scholar 

  21. Thakur RK, Vial C, Nigam KDP, Nauman EB, Djelveh G (2003) Static mixers in the process industries—a review. Chem Eng Res Des 81:787–826. https://doi.org/10.1205/026387603322302968

    Article  CAS  Google Scholar 

  22. Toledo M (2021) Reaction Calorimeter RC1. https://www.mt.com/int/en/home/products/L1_AutochemProducts/Reaction-Calorimeters-RC1-HFCal/RC1mx-Reaction-Calorimeter.html#overviewpm. Accessed 5 Jun 2021

  23. Rütti DP, Moser M, Georg AG, Spier ES, Meier DM (2021) Kinetic data for continuous processes from liquid-liquid loop reactor experiments. Chem Ing Tech 93:1267–1272. https://doi.org/10.1002/cite.202100005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Swiss Government and Innosuisse for their funding and Berthold Schenkel, Francesco Venturoni, Bertrand Guélat, Jutta Polenk, Paolo Filipponi and Frederik Mortzfeld from Novartis Pharma AG for helpful discussions.

Funding

Co-funded by Innosuisse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlies Moser.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Yes.

Consent for publication

Yes.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Flow calorimetry was achieved for a fast and selective reaction without the need for calibration

• The mean heat of reaction of the flow screening deviates only about 2% from the literature value

• Low pressure drop in the milli-scale flow reactor allows the use of high viscous process fluids

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, M., Georg, A.G., Steinemann, F.L. et al. Continuous milli-scale reaction calorimeter for direct scale-up of flow chemistry. J Flow Chem 11, 691–699 (2021). https://doi.org/10.1007/s41981-021-00204-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-021-00204-y

Keywords

Navigation