Skip to main content
Log in

Existence and Concentration Behavior of Ground States for a Generalized Quasilinear Choquard Equation Involving Steep Potential Well

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

In this paper, we consider the following generalized quasilinear Choquard equation with steep potential well

$$\begin{aligned} -\text {div}(g^{2}(u)\nabla u)+g(u)g^{\prime }(u)|\nabla u|^{2}+\lambda V(x)u=(I_{\alpha }*F(u))f(u), \ x \in {\mathbb {R}}^{N}, \end{aligned}$$

where \(N\ge 3\), \(\alpha \in (0,N)\), \(\lambda >0\) is a parameter and \(I_{\alpha }\) is the Riesz potential. Under some appropriate assumptions on g, V(x) and f, we prove the existence of ground states and obtain the concentration behavior of the solutions when \(\lambda \) is large enough via variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AbdoIrazaghi, F., Razani, A.: A unique weak solution for a kind of coupled system of fractional Schrödinger equations. Opuscula Math. 40, 313–322 (2022)

    Article  Google Scholar 

  2. Alves, C.O., Wang, Y., Shen, Y.: Soliton solutions for a class of quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 259, 318–343 (2015)

    Article  MATH  Google Scholar 

  3. Alves, C., Yang, M.B.: Existence of semiclassical ground state solutions for a generalized Choquard equation. J. Differ. Equ. 257, 4133–4164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R} }^{N}\): Existence and multiplicity results. Comm. Partial Diff. Equations. 20, 1725–1741 (1995)

    Article  MATH  Google Scholar 

  5. Bass, F.G., Nasonov, N.N.: Nonlinear electromagnetic-spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  Google Scholar 

  6. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, I existence of a ground state. Arch. Ration. Mech. Anal. 82, 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brandi, H.S., Manus, C., Mainfray, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. I. Paraxial approximation. Phys. Fluids B: Plasma Phys. 5, 3539–3550 (1993)

    Article  Google Scholar 

  8. Briill, L., Lange, H.: Solitary waves for quasilinear Schrödinger equations. Expos. Math. 4, 278–288 (1986)

    Google Scholar 

  9. Borovskii, A.V., Galkin, A.L.: Dynamic modulation of an ultrashort high-intensity laser pulse in matter. JETP 77, 562–573 (1993)

    Google Scholar 

  10. Chen, J.H., Cheng, B.T., Huang, X.J.: Ground state solutions for a class of quasilinear Schrödinger equations with Choquard type nonlinearity. Appl. Math. Lett. 102, 106141 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J.H., Huang, X.J., Cheng, B.T.: Positive solutions for a class of quasilinear Schrödinger equations with superlinear condition. Appl. Math. Lett. 87, 165–171 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, J.H., Huang, X.J., Cheng, B.T., Zhu, C.X.: Some results on standing wave solutions for a class of quasilinear Schrödinger equations. J. Math. Phys. 60, 091506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, J.H., Huang, X.J., Qin, D.D., Cheng, B.T.: Existence and asymptotic behavior of standing wave solutions for a class of generalized quasilinear Schrödinger equations with critical Sobolev exponents. Asymptot. Anal. 120, 199–248 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Chen, J.H., Wu, Q.F., Huang, X.J.: Positive solutions for a class of quasilinear Schrödinger equations equations with two parameters. Bull. Malays. Math. Sci. Soc. 43, 2321–2341 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, X.L., Sudan, R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 2082–2085 (1993)

    Article  Google Scholar 

  16. Chen, Y.P., Niu, N.N.: Multiplicity of solutions for a class of upper critical Choquard equation with steep potential well. J. Fixed Point Theory Appl. 25, 24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dehsari, I., Nyamoradi, N.: Ground states solutions for a modified fractional Schrödinger equation with a generalized Choquard nonlinearity. J. Contemp. Math. Anal. 57, 131–144 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dehsari, I., Nyamoradi, N.: Ground states solutions for a modified generalized Choquard fractional Schrödinger equation. Complex Var. Elliptic Equ. 1-18 (2022)

  19. Deng, Y., Huang, W.: Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete Contin. Dyn. Syst. 37, 4213 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Deng, Y., Peng, S., Wang, J.: Nodal soliton solutions for generalized quasilinear Schrödinger equations. J. Math. Phys. 55, 051501 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Deng, Y., Peng, S., Wang, J.: Nodal soliton solutions for quasilinear Schrödinger equations with critical exponent. J. Math. Phys. 54, 011504 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Deng, Y., Peng, S., Yan, S.: Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J. Differ. Equ. 260, 1228–1262 (2016)

    Article  MATH  Google Scholar 

  23. Deng, Y., Peng, S., Yan, S.: Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J. Math. Phys. 258, 115–147 (2015)

    MATH  Google Scholar 

  24. Ekeland, I.: Convexity methods in Hamiltonian mechanics. Springer Science & Business Media (2012)

    MATH  Google Scholar 

  25. Furtado, M.F., Silva, E.D., Silva, M.L.: Existence of solution for a generalized quasilinear elliptic problem. J. Math. Phys. 58, 031503 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo, L., Hu, T.X.: Existence and asymptotic behavior of the least energy solutions for fractional Choquard equations with potential well. Math. Methods Appl. Sci. 41, 1145–1161 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Zeitschrift für Physik B Condensed Matter. 37, 83–87 (1980)

    MathSciNet  Google Scholar 

  28. Kosevich, A.M., Ivanov, B.A., Kovalev, A.S.: Magnetic solitons. Phys. Rep. 194, 117–238 (1990)

    Article  Google Scholar 

  29. Kurihara, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Japan. 50, 3262–3267 (1981)

    Article  Google Scholar 

  30. Laedke, E.W., Spatschek, K.H., Stenflo, L.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lange, H., Poppenberg, M., Teismann, H.: Nash Moser methods for the solution of quasilinear Schrödinger equations. Comm. Partial Diff. Equations. 24, 1399–1418 (1999)

    Article  MATH  Google Scholar 

  32. Lieb, E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lieb, E.H., Loss, M.: Analysis. American Mathematical Soc (2001)

    MATH  Google Scholar 

  34. Li, Y.Y., Li, G.D., Tang, C.L.: Existence and concentration of ground state solutions for Choquard equations involving critical growth and steep potential well. Nonlinear Anal. 200, 111997 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Y.Y., Li, G.D., Tang, C.L.: Existence and concentration of solutions for Choquard equations with steep potential well and doubly critical exponents. Adv. Nonlinear Stud. 21, 135–154 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ling, P.Y., Huang, X.J., Chen, J.H.: Some Existence Results on a class of generalized quasilinear Schrödinger equations with Choquard type. Bull. Iranian Math. Soc. 48, 1389–1411 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lü, D.P.: Existence and concentration behavior of ground state solutions for magnetic nonliner Choquard equations. Comm. Pure Appl. Math. 15, 1781–1795 (2016)

    MATH  Google Scholar 

  38. Makhankov, V.G., Fedyanin, V.K.: Nonlinear effects in quasi-one-dimensional models and condensed matter theory. Phy. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  39. Meng, Y., Huang, X.J., Chen, J.H.: Positive solutions for a class of generalized quasilinear Schrödinger equation involving concave and convex nonlinearities in Orilicz space. Electron. J. Qual. Theory Differ. Equ. 87, 1–26 (2021)

    MATH  Google Scholar 

  40. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent. Commun. Contemp. Math. 17, 1550005 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mugnai, D., Proietti Lippi, E.: Fractional Choquard equations with confining potential with or without subcritical perturbations. Adv. Nonlinear Stud. 20, 163–183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pekar, S.I.: Untersuchungen uber die Elektronentheorie der Kristalle. Akademie-verlag (1954)

    Book  MATH  Google Scholar 

  46. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativity Gravitation. 28, 581–600 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  47. Poppenberg, M., Schmitt, K., Wang, Z.Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Diff. Equations. 14, 329–344 (2002)

    Article  MATH  Google Scholar 

  48. Quispel, G.R.W., Capel, H.W.: Equation of motion for the Heisenberg spin chain. Phys. A. 110, 41–80 (1982)

    Article  MathSciNet  Google Scholar 

  49. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ragusa, M.A., Razani, A.: Weak solutions for a system of quasilinear elliptic equations. Contrib. Math. 1, 11–16 (2020)

    Google Scholar 

  51. Ritchie, B.: Relativistic self-focusing and channel formation in laser-plasma interactions. Phys. Rev. E. 50, R687 (1994)

    Article  Google Scholar 

  52. Severo, U.B., Gloss, E., da Silva, E.D.: On a class of quasilinear Schrödinger equations with superlinear or asymptotically linear terms. J. Differ. Equ. 263, 3550–3580 (2017)

    Article  MATH  Google Scholar 

  53. Shen, Y.T., Wang, Y.J.: Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal. 80, 194–201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shi, H.X., Chen, H.B.: Infinitely many solutions for generalized quasilinear Schrödinger equations with a finite potential well. Bull. Iran. Math. Soc. 44, 691–705 (2018)

    Article  MATH  Google Scholar 

  55. Willem, M.: Minimax theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  56. Wu, H.: Existence and concentration of ground states to a critical Choquard-type equation involving steep potential well. Math. Meth. Appl. Sci. 44, 14606–14618 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  57. Xue, Y.F., Zhong, X.Y., Tang, C.L.: Existence of ground state solutions for critical quasilinear Schrödinger equations with steep potential well. Adv. Nonlinear Stud. 22, 619–634 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang, X., Tang, X., Gu, G.: Concentration behavior of ground states for a generalized quasilinear Choquard equation. Math. Methods Appl. Sci. 3, 3569–3585 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang, H., Chen, H.B.: Ground state solution for a class of Choquard equations involving general critical growth term. Bull. Iran. Math. Soc. 48, 2125–2144 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zhang, J., Zhang, W., Rădulescu, V.D.: Double phase problems with competing potentials: concentration and multiplication of ground states. Math. Z. 301, 4037–4078 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  61. Zhang, W., Zhang, J.: Multiplicity and concentration of positive solutions for fractional unbalanced double-phase problems. J. Geom. Anal. 32, 1–48 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang, W., Yuan, S., Wen, L.: Existence and concentration of ground-states for fractional Choquard equation with indefinite potential. Adv. Nonlinear Anal. 11, 1552–1578 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11901276 and 11961045), and supported partly by the Provincial Natural Science Foundation of Jiangxi, China (Nos. 20202BAB201001 and 20202BAB211004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixuan Wang.

Additional information

Communicated by Amin Esfahani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, X. Existence and Concentration Behavior of Ground States for a Generalized Quasilinear Choquard Equation Involving Steep Potential Well. Bull. Iran. Math. Soc. 49, 9 (2023). https://doi.org/10.1007/s41980-023-00756-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41980-023-00756-w

Keywords

Mathematics Subject Classification

Navigation