Skip to main content
Log in

On constrained minimization, variational inequality and split feasibility problem via new iteration scheme in Banach spaces

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

The motive of this paper is to propose a new iterative algorithm for evaluating a solution of constrained minimization problem, variational inequality and split feasibility problem and common fixed point of two generalized \(\alpha \)-nonexpansive mappings. We obtain few convergence results in the setting of uniformly convex Banach space. We also present some numerical examples for supporting our main results and to demonstrate the convergence behaviour of the obtained process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable

References

  1. Pakkaranang, N., Kumam, P., Berinde, V., Suleiman, Y.I.: Superiorization methodology and perturbation resilience of inertial proximal gradient algorithm with application to signal recovery. J. Supercomput. 76(12), 9456–9477 (2020)

    Article  Google Scholar 

  2. Pakkaranang, N., Kumam, P., Suleiman, Y.I., Ali, B.: Bounded perturbation resilience of viscosity proximal algorithm for solving split variational inclusion problems with applications. Math. Methods Appl. Sci. (2020)

  3. Wairojjana, N., Younis, M., Rehman, H., Pakkaranang, N., Pholasa, N.: Modified viscosity subgradient extragradient-like algorithms for solving monotone variational inequalities problems. Axioms. 9(4), Article ID 118 (2020)

  4. Kitkuan, D., Muangchoo, K., Padcharoen, A., Pakkaranang, N., Kumam, P.: A viscosity forward-backward splitting approximation method in Banach spaces and its application to convex optimization and image restoration problems. Comput. Appl. Math. 2(4) (2020)

  5. Suntrayuth, P., Pakkaranang, N., Kumam, P., Thounthong, P., Cholamjiak, P.: Convergence theorems for generalized viscosity explicit methods for nonexpansive mappings in Banach spaces and some applications. Mathematics. 7(2) (2019)

  6. Ocejo, A.: Asian option as a fixed point. J. Fixed Point Theory Appl. 20, 93 (2018)

    Article  MathSciNet  Google Scholar 

  7. Määttä, J., Siltanen, S., Roos, T.: A fixed-point image denoising algorithm with automatic window selection. IEEE (2014)

  8. Ege, O., Karaca, I.: Banach fixed point theorem for digital images. J. Nonlinear Sci. Appl. 8, 237–245 (2015)

    Article  MathSciNet  Google Scholar 

  9. Dolhare, U.P., Nalawade, V.V.: Fixed point theorems in digital images and applications to fractal image compression. Asian J. Math. Comput. Res. 25(1), 18–37 (2018)

    Google Scholar 

  10. Yambangwai, D., Aunruean, S., Thianwan, T.: A new modified three-step iteration method for G-nonexpansive mappings in Banach spaces with a graph. Numer. Algorithms. pp 1–29 (2019)

  11. Kitisak, P., Cholamjiak, W., Yambangwai, D., Jaidee, R.: A modified parallel hybrid subgradient extragradient method of variational inequality problems. Thai J. Math. 18(1), 260–273 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Garodia, C., Uddin, I.: A new iterative method for solving split feasibility problem. J. Appl. Anal. Comput. 10(3), 986–1004 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Garodia, C., Uddin, I.: A new fixed-point algorithm for finding the solution of a delay differential equation. Aims Math. 5(4), 3182–3200 (2020)

    Article  MathSciNet  Google Scholar 

  14. Garodia, C., Uddin, I.: Approximating common fixed points of non-expansive mappings in CAT(0) spaces. U.P.B. Sci. Bull. Ser. A. 81(4), 85–96 (2019)

  15. Uddin, I., Garodia, C., Khan, S.H.: A proximal point algorithm converging strongly to a minimizer of a convex function. Jordan J. Math. Stat. 13(4), 659–685 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Yildirim, I., Gu, F.: A new iterative process for approximating common fixed points of non-self I-asymptotically quasi-non-expansive mappings. Appl. Math. A J. Chin. Univers. 27(4), 489–502 (2012)

    Article  Google Scholar 

  17. Yildirim, I., Khan, S.H.: Convergence theorems for common fixed points of asymptotically quasi-non-expansive mappings in convex metric spaces. Appl. Math. Comput. 218(9), 4860–4866 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Browder, F.E.: Non-expansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 54, 1041–1044 (1965)

    Article  Google Scholar 

  19. Göhde, D.: Zum Prinzip der kontraktiven abbildung. Math Nachr. 30, 251–258 (1965)

    Article  MathSciNet  Google Scholar 

  20. Kirk, W.A.: A fixed point theorem for mappings which do not increase distances. Am. Math. Monthly. 72, 1004–1006 (1965)

    Article  MathSciNet  Google Scholar 

  21. Suzuki, T.: Fixed point theorems and convergence theorems for some generalized non-expansive mapping. J. Math. Anal. Appl. 340, 1088–1095 (2008)

    Article  MathSciNet  Google Scholar 

  22. Aoyama, K., Kohsaka, F.: Fixed point theorem for \(\alpha \)-nonexpansive mappings in Banach spaces. Nonlinear Anal. 74, 4387–4391 (2011)

    Article  MathSciNet  Google Scholar 

  23. Pant, R., Shukla, R.: Approximating fixed points of generalized \(\alpha \)-nonexpansive mappings in banach spaces. Numer. Funct. Anal. Optim. 38(2), 248–266 (2017)

    Article  MathSciNet  Google Scholar 

  24. Schu, J.: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 43, 153–159 (1991)

    Article  MathSciNet  Google Scholar 

  25. Senter, H.F., Dotson, W.G.: Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 44(2), 375–380 (1974)

    Article  MathSciNet  Google Scholar 

  26. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  27. Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–517 (1967)

    Article  Google Scholar 

  28. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms. 8(24), 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  29. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441–453 (2002)

    Article  MathSciNet  Google Scholar 

  30. Feng, M., Shi, L., Chen, R.: A new three-step iterative algorithm for solving the split feasibility problem. U. P. B. Sci. Bull. Ser. A. 81(1), 93–102 (2019)

  31. Xu, H.K.: A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22(6), 2021–2034 (2006)

  32. Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010) 17pp

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for pointing out the mistake in Lemma 3.2 and for their valuable comments.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

The authors gave equal contribution in this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Izhar Uddin.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Code availability

Not applicable

Additional information

Communicated by Hossein Mohebi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garodia, C., Uddin, I. & Baleanu, D. On constrained minimization, variational inequality and split feasibility problem via new iteration scheme in Banach spaces. Bull. Iran. Math. Soc. 48, 1493–1512 (2022). https://doi.org/10.1007/s41980-021-00596-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-021-00596-6

Keywords

Mathematics Subject Classification

Navigation