Skip to main content
Log in

Construction of Implicit–Explicit Second-Derivative BDF Methods

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

In many applications, large systems of ordinary differential equations with both stiff and nonstiff parts have to be solved numerically. Implicit–explicit (IMEX) methods are useful for efficiently solving these problems. In this paper, we construct IMEX second-derivative BDF methods with considerable stability properties. To show the efficiency of the introduced technique, numerical comparisons are given by solving some problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdi, A., Braś, M., Hojjati, G.: On the construction of second derivative diagonally implicit multistage integration methods. Appl. Numer. Math. 76, 1–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdi, A., Hojjati, G.: An extension of general linear methods. Numer. Algorithms 57, 149–167 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abdi, A., Hojjati, G.: Maximal order of second derivative general linear methods with Runge–Kutta stability. Appl. Numer. Math. 61, 1046–1058 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdi, A., Hojjati, G.: Implementation of Nordsieck second derivative methods for stiff ODEs. Appl. Numer. Math. 94, 241–253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32, 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boscarino, S.: Error analysis of IMEX Runge–Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal. 45, 1600–1621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brás, M., Izzo, G., Jackiewicz, Z.: Accurate implicit-explicit general linear methods with inherent Runge-Kutta stability. J. Sci. Comput. 70, 1105–1143 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  10. Butcher, J.C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algorithms 40, 415–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolation based implicit–explicit general linear methods. Numer. Algorithms 65, 377–399 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cash, J.R.: Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J. Numer. Anal. 18, 21–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chan, R.P.K., Tsai, A.Y.J.: On explicit two-derivative Runge–Kutta methods. Numer. Algorithms 53, 171–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantinescu, E.M., Sandu, A., Carmichael, G.R.: Modeling atmospheric chemistry and transport with dynamic adaptive resolution. Comput. Geosci. 12, 133–151 (2008)

    Article  MATH  Google Scholar 

  15. Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frank, J., Hundsdorfer, W., Verwer, J.G.: On the stability of implicit–explicit linear multistep methods. Appl. Numer. Math. 25, 193–205 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hairer, E., Wanner, G.: Solving Ordinary Differential Equation II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  18. Hojjati, G., Rahimi Ardabili, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff systems. Appl. Math. Model. 30, 466–476 (2006)

    Article  MATH  Google Scholar 

  19. Hundsdorfer, W., Ruuth, S.J.: IMEX extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Izzo, G., Jackiewicz, Z.: Highly stable implicit–explicit Runge–Kutta methods. Appl. Numer. Math. 113, 71–92 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kennedy, C.A., Carpenter, M.H.: Additive Runge–Kutta schemes for convection-diffiusion-reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Tsai, A.Y.J., Chan, R.P.K., Wang, S.: Two-derivative Runge–Kutta methods for PDEs using a novel discretization approach. Numer. Algorithms 65, 687–703 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Verwer, J.G., Sommeijer, B.P.: An implicit–explicit Runge–Kutta–Chebyshev scheme for diffusion-reaction equations. SIAM J. Sci. Comput. 25, 1824–1835 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hojjati.

Additional information

Communicated by Davod Khojasteh Salkuyeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefzadeh, N., Hojjati, G. & Abdi, A. Construction of Implicit–Explicit Second-Derivative BDF Methods. Bull. Iran. Math. Soc. 44, 991–1006 (2018). https://doi.org/10.1007/s41980-018-0065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41980-018-0065-2

Keywords

Mathematics Subject Classification

Navigation