Skip to main content
Log in

Electrifying the future: the advances and opportunities of electrocatalytic carbon dioxide reduction in acid

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Transforming carbon dioxide (CO2) into products using renewable electricity is a crucial and captivating quest for a green and circular economy. Compared with commonly used alkali electrolytes, acidic media for electrocatalytic CO2 reduction (CO2RR) boasts several advantages, such as high carbon utilization efficiency, high overall energy utilization rate, and low carbonate formation, making it a compelling choice for industrial applications. However, the acidic CO2RR also struggles with formidable hurdles, encompassing the fierce competition with the hydrogen evolution reaction, the low CO2 solubility and availability, and the suboptimal performance of catalysts. This review provides a comprehensive overview of the CO2RR in acidic media. By elucidating the underlying regulatory mechanism, we gain valuable insights into the fundamental principles governing the acidic CO2RR. Furthermore, we examine cutting-edge strategies aimed at optimizing its performance and the roles of reactor engineering, especially membrane electrode assembly reactors, in facilitating scalable and carbon efficient conversion. Moreover, we present a forward-looking perspective, highlighting the promising prospects of acidic CO2RR research in ushering us towards a carbon-neutral society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G. Proc Natl Acad Sci USA, 2007, 104: 18866–18870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jin S, Hao Z, Zhang K, Yan Z, Chen J. Angew Chem Int Ed, 2021, 60: 20627–20648

    Article  CAS  Google Scholar 

  3. Zheng T, Liu C, Guo C, Zhang M, Li X, Jiang Q, Xue W, Li H, Li A, Pao CW, Xiao J, Xia C, Zeng J. Nat Nanotechnol, 2021, 16: 1386–1393

    Article  PubMed  CAS  Google Scholar 

  4. Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM, García de Arquer FP, Kiani A, Edwards JP, De Luna P, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH. Science, 2018, 360: 783–787

    Article  PubMed  CAS  Google Scholar 

  5. Li F, Thevenon A, Rosas-Hernández A, Wang Z, Li Y, Gabardo CM, Ozden A, Dinh CT, Li J, Wang Y, Edwards JP, Xu Y, McCallum C, Tao L, Liang ZQ, Luo M, Wang X, Li H, O’Brien CP, Tan CS, Nam DH, Quintero-Bermudez R, Zhuang TT, Li YC, Han Z, Britt RD, Sinton D, Agapie T, Peters JC, Sargent EH. Nature, 2020, 577: 509–513

    Article  PubMed  CAS  Google Scholar 

  6. Fan L, Liu CY, Zhu P, Xia C, Zhang X, Wu ZY, Lu Y, Senftle TP, Wang H. Joule, 2022, 6: 205–220

    Article  CAS  Google Scholar 

  7. Gao D, Arán-Ais RM, Jeon HS, Roldan Cuenya B. Nat Catal, 2019, 2: 198–210

    Article  CAS  Google Scholar 

  8. Kibria MG, Edwards JP, Gabardo CM, Dinh CT, Seifitokaldani A, Sinton D, Sargent EH. Adv Mater, 2019, 31: 1807166

    Article  Google Scholar 

  9. Chen C, Li Y, Yang P. Joule, 2021, 5: 737–742

    Article  Google Scholar 

  10. Rabinowitz JA, Kanan MW. Nat Commun, 2020, 11: 5231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ozden A, de Arquer FPG, Huang JE, Wicks J, Sisler J, Miao RK, O’Brien CP, Lee G, Wang X, Ip AH, Sargent EH, Sinton D. Nat Sustain, 2022, 5: 563–573

    Article  Google Scholar 

  12. Kim JYT, Zhu P, Chen FY, Wu ZY, Cullen DA, Wang H. Nat Catal, 2022, 5: 288–299

    Article  CAS  Google Scholar 

  13. Huang JE, Li F, Ozden A, Rasouli AS, de Arquer FPG, Liu S, Zhang S, Luo M, Wang X, Lum Y, Xu Y, Bertens K, Miao RK, Dinh CT, Sinton D, Sargent EH. Science, 2021, 372: 1074–1078

    Article  PubMed  CAS  Google Scholar 

  14. Monteiro MCO, Philips MF, Schouten KJP, Koper MTM. Nat Commun, 2021, 12: 4943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Pan B, Fan J, Zhang J, Luo Y, Shen C, Wang C, Wang Y, Li Y. ACS Energy Lett, 2022, 7: 4224–4231

    Article  CAS  Google Scholar 

  16. Cao Y, Chen Z, Li P, Ozden A, Ou P, Ni W, Abed J, Shirzadi E, Zhang J, Sinton D, Ge J, Sargent EH. Nat Commun, 2023, 14: 2387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Li X, Zhang P, Zhang L, Zhang G, Gao H, Pang Z, Yu J, Pei C, Wang T, Gong J. Chem Sci, 2023, 14: 5602–5607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Xie Y, Ou P, Wang X, Xu Z, Li YC, Wang Z, Huang JE, Wicks J, McCallum C, Wang N, Wang Y, Chen T, Lo BTW, Sinton D, Yu JC, Wang Y, Sargent EH. Nat Catal, 2022, 5: 564–570

    Article  CAS  Google Scholar 

  19. Gabardo CM, O’Brien CP, Edwards JP, McCallum C, Xu Y, Dinh CT, Li J, Sargent EH, Sinton D. Joule, 2019, 3: 2777–2791

    Article  CAS  Google Scholar 

  20. Chen X, Chen J, Alghoraibi NM, Henckel DA, Zhang R, Nwabara UO, Madsen KE, Kenis PJA, Zimmerman SC, Gewirth AA. Nat Catal, 2021, 4: 20–27

    Article  Google Scholar 

  21. Ni J, Cheng Q, Liu S, Wang M, He Y, Qian T, Yan C, Lu J. Adv Funct Mater, 2023, 33: 2212483

    Article  CAS  Google Scholar 

  22. Moreno-García P, Kovács N, Grozovski V, Gálvez-Vázquez MJ, Vesztergom S, Broekmann P. Anal Chem, 2020, 92: 4301–4308

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ooka H, Figueiredo MC, Koper MTM. Langmuir, 2017, 33: 9307–9313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bondue CJ, Graf M, Goyal A, Koper MTM. J Am Chem Soc, 2021, 143: 279–285

    Article  PubMed  CAS  Google Scholar 

  25. Kim C, Bui JC, Luo X, Cooper JK, Kusoglu A, Weber AZ, Bell AT. Nat Energy, 2022, 7: 116

    Article  Google Scholar 

  26. Monteiro MCO, Dattila F, Hagedoorn B, García-Muelas R, López N, Koper MTM. Nat Catal, 2021, 4: 654–662

    Article  CAS  Google Scholar 

  27. Gu J, Liu S, Ni W, Ren W, Haussener S, Hu X. Nat Catal, 2022, 5: 268–276

    Article  CAS  Google Scholar 

  28. Qin HG, Li FZ, Du YF, Yang LF, Wang H, Bai YY, Lin M, Gu J. ACS Catal, 2022, 13: 916–926

    Article  Google Scholar 

  29. Zhang F, Co AC. Angew Chem Int Ed, 2020, 59: 1674–1681

    Article  CAS  Google Scholar 

  30. Wen G, Ren B, Zheng Y, Li M, Silva C, Song S, Zhang Z, Dou H, Zhao L, Luo D, Yu A, Chen Z. Adv Energy Mater, 2022, 12: 2103289

    Article  CAS  Google Scholar 

  31. Wang Z, Hou P, Wang Y, Xiang X, Kang P. ACS Sustain Chem Eng, 2019, 7: 6106–6112

    Article  CAS  Google Scholar 

  32. Lees EW, Mowbray BAW, Parlane FGL, Berlinguette CP. Nat Rev Mater, 2022, 7: 55–64

    Article  CAS  Google Scholar 

  33. Fan L, Xia C, Yang F, Wang J, Wang H, Lu Y. Sci Adv, 2020, 6: eaay3111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Woldu AR, Huang Z, Zhao P, Hu L, Astruc D. Coord Chem Rev, 2022, 454: 214340

    Article  CAS  Google Scholar 

  35. Nitopi S, Bertheussen E, Scott SB, Liu X, Engstfeld AK, Horch S, Seger B, Stephens IEL, Chan K, Hahn C, Nørskov JK, Jaramillo TF, Chorkendorff I. Chem Rev, 2019, 119: 7610–7672

    Article  PubMed  CAS  Google Scholar 

  36. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Science, 2017, 355: eaad4998

    Article  PubMed  Google Scholar 

  37. Lee CW, Yang KD, Nam DH, Jang JH, Cho NH, Im SW, Nam KT. Adv Mater, 2018, 30: 1704717

    Article  Google Scholar 

  38. Shen J, Kortlever R, Kas R, Birdja YY, Diaz-Morales O, Kwon Y, Ledezma-Yanez I, Schouten KJP, Mul G, Koper MTM. Nat Commun, 2015, 6: 8177

    Article  PubMed  Google Scholar 

  39. Jiang Z, Zhang Z, Li H, Tang Y, Yuan Y, Zao J, Zheng H, Liang Y. Adv Energy Mater, 2022, 13: 2203603

    Article  Google Scholar 

  40. Resasco J, Chen LD, Clark E, Tsai C, Hahn C, Jaramillo TF, Chan K, Bell AT. J Am Chem Soc, 2017, 139: 11277–11287

    Article  PubMed  CAS  Google Scholar 

  41. Liu H, Liu J, Yang B. ACS Catal, 2021, 11: 12336–12343

    Article  CAS  Google Scholar 

  42. Xu Z, Sun M, Zhang Z, Xie Y, Hou H, Ji X, Liu T, Huang B, Wang Y. ChemCatChem, 2022, 14: e202200052

    Article  CAS  Google Scholar 

  43. Goyal A, Koper MTM. Angew Chem Int Ed, 2021, 60: 13452–13462

    Article  CAS  Google Scholar 

  44. Liu E, Li J, Jiao L, Doan HTT, Liu Z, Zhao Z, Huang Y, Abraham KM, Mukerjee S, Jia Q. J Am Chem Soc, 2019, 141: 3232–3239

    Article  PubMed  CAS  Google Scholar 

  45. Monteiro MCO, Dattila F, López N, Koper MTM. J Am Chem Soc, 2022, 144: 1589–1602

    Article  PubMed  CAS  Google Scholar 

  46. Jiao X, Hu Z, Li L, Wu Y, Zheng K, Sun Y, Xie Y. Sci China Chem, 2022, 65: 428–440

    Article  CAS  Google Scholar 

  47. Varela AS, Kroschel M, Leonard ND, Ju W, Steinberg J, Bagger A, Rossmeisl J, Strasser P. ACS Energy Lett, 2018, 3: 812–817

    Article  CAS  Google Scholar 

  48. Cave ER, Shi C, Kuhl KP, Hatsukade T, Abram DN, Hahn C, Chan K, Jaramillo TF. ACS Catal, 2018, 8: 3035–3040

    Article  CAS  Google Scholar 

  49. Wang Y, Wang C, Wei Y, Wei F, Kong L, Feng J, Lu JQ, Zhou X, Yang F. Chem Eur J, 2022, 28: e202201832

    Article  PubMed  CAS  Google Scholar 

  50. Li H, Li H, Wei P, Wang Y, Zang Y, Gao D, Wang G, Bao X. Energy Environ Sci, 2023, 16: 1502–1510

    Article  CAS  Google Scholar 

  51. Wu Q, Liang J, Han LL, Huang YB, Cao R. Chem Commun, 2023, 59: 5102–5105

    Article  CAS  Google Scholar 

  52. Gonglach S, Paul S, Haas M, Pillwein F, Sreejith SS, Barman S, De R, Müllegger S, Gerschel P, Apfel UP, Coskun H, Aljabour A, Stadler P, Schöfberger W, Roy S. Nat Commun, 2019, 10: 3864

    Article  PubMed  PubMed Central  Google Scholar 

  53. De R, Gonglach S, Paul S, Haas M, Sreejith SS, Gerschel P, Apfel UP, Vuong TH, Rabeah J, Roy S, Schöfberger W. Angew Chem Int Ed, 2020, 59: 10527–10534

    Article  CAS  Google Scholar 

  54. Zhang L, Feng J, Liu S, Tan X, Wu L, Jia S, Xu L, Ma X, Song X, Ma J, Sun X, Han B. Adv Mater, 2023, 35: e2209590

    Article  PubMed  Google Scholar 

  55. Yang F, Elnabawy AO, Schimmenti R, Song P, Wang J, Peng Z, Yao S, Deng R, Song S, Lin Y, Mavrikakis M, Xu W. Nat Commun, 2020, 11: 1088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Qiao Y, Lai W, Huang K, Yu T, Wang Q, Gao L, Yang Z, Ma Z, Sun T, Liu M, Lian C, Huang H. ACS Catal, 2022, 12: 2357–2364

    Article  CAS  Google Scholar 

  57. Shen H, Jin H, Li H, Wang H, Duan J, Jiao Y, Qiao SZ. Nat Commun, 2023, 14: 2843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zhang J, Guo C, Fang S, Zhao X, Li L, Jiang H, Liu Z, Fan Z, Xu W, Xiao J, Zhong M. Nat Commun, 2023, 14: 1298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bui JC, Kim C, King AJ, Romiluyi O, Kusoglu A, Weber AZ, Bell AT. Acc Chem Res, 2022, 55: 484–494

    Article  PubMed  CAS  Google Scholar 

  60. Liu Z, Yan T, Shi H, Pan H, Cheng Y, Kang P. ACS Appl Mater Interfaces, 2022, 14: 7900–7908

    Article  PubMed  CAS  Google Scholar 

  61. Fan Q, Bao GX, Chen X, Meng Y, Zhang S, Ma X. ACS Catal, 2022, 12: 7517–7523

    Article  CAS  Google Scholar 

  62. Goyal A, Bondue CJ, Graf M, Koper MTM. Chem Sci, 2022, 13: 3288–3298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ma Z, Yang Z, Lai W, Wang Q, Qiao Y, Tao H, Lian C, Liu M, Ma C, Pan A, Huang H. Nat Commun, 2022, 13: 7596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Liu Y, McCrory CCL. Nat Commun, 2019, 10: 1683

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rutkowska IA, Chmielnicka A, Krzywiecki M, Kulesza PJ. ACS Meas Sci Au, 2022, 2: 553–567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Li L, Liu Z, Yu X, Zhong M. Angew Chem Int Ed, 2023, 62: e202300226

    Article  CAS  Google Scholar 

  67. Yan T, Pan H, Liu Z, Kang P. Small, 2023, 19: e2207650

    Article  PubMed  Google Scholar 

  68. Xing Z, Hu L, Ripatti DS, Hu X, Feng X. Nat Commun, 2021, 12: 136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Sheng X, Ge W, Jiang H, Li C. Adv Mater, 2022, 34: e2201295

    Article  PubMed  Google Scholar 

  70. Wang Z, Li Y, Zhao X, Chen S, Nian Q, Luo X, Fan J, Ruan D, Xiong BQ, Ren X. J Am Chem Soc, 2023, 145: 6339–6348

    Article  PubMed  CAS  Google Scholar 

  71. Han Z, Kortlever R, Chen HY, Peters JC, Agapie T. ACS Cent Sci, 2017, 3: 853–859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Nie W, Heim GP, Watkins NB, Agapie T, Peters JC. Angew Chem Int Ed, 2023, 62: e202216102

    Article  CAS  Google Scholar 

  73. Sassenburg M, Kelly M, Subramanian S, Smith WA, Burdyny T. ACS Energy Lett, 2023, 8: 321–331

    Article  PubMed  CAS  Google Scholar 

  74. Zhao Y, Hao L, Ozden A, Liu S, Miao RK, Ou P, Alkayyali T, Zhang S, Ning J, Liang Y, Xu Y, Fan M, Chen Y, Huang JE, Xie K, Zhang J, O’Brien CP, Li F, Sargent EH, Sinton D. Nat Synth, 2023, 2: 403–412 sai]75_Wakerley D, Lamaison S, Wicks J, Clemens A, Feaster J, Corral D, Jaffer SA, Sarkar A, Fontecave M, Duoss EB, Baker S, Sargent EH, Jaramillo TF, Hahn C. Nat Energy, 2022, 7: 130–143

    Article  Google Scholar 

  75. Yang K, Li M, Subramanian S, Blommaert MA, Smith WA, Burdyny T. ACS Energy Lett, 2021, 6: 4291–4298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Adnan MA, Zeraati AS, Nabil SK, Al-Attas TA, Kannimuthu K, Dinh CT, Gates ID, Kibria MG. Adv Energy Mater, 2023, 13: 2203158

    Article  CAS  Google Scholar 

  77. Yan Z, Hitt JL, Zeng Z, Hickner MA, Mallouk TE. Nat Chem, 2021, 13: 33–40

    Article  PubMed  CAS  Google Scholar 

  78. Salvatore DA, Weekes DM, He J, Dettelbach KE, Li YC, Mallouk TE, Berlinguette CP. ACS Energy Lett, 2018, 3: 149–154

    Article  CAS  Google Scholar 

  79. O’Brien CP, Miao RK, Liu S, Xu Y, Lee G, Robb A, Huang JE, Xie K, Bertens K, Gabardo CM, Edwards JP, Dinh CT, Sargent EH, Sinton D. ACS Energy Lett, 2021, 6: 2952–2959

    Article  Google Scholar 

  80. Xie K, Miao RK, Ozden A, Liu S, Chen Z, Dinh CT, Huang JE, Xu Q, Gabardo CM, Lee G, Edwards JP, O’Brien CP, Boettcher SW, Sinton D, Sargent EH. Nat Commun, 2022, 13: 3609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Fan M, Huang JE, Miao RK, Mao Y, Ou P, Li F, Li XY, Cao Y, Zhang Z, Zhang J, Yan Y, Ozden A, Ni W, Wang Y, Zhao Y, Chen Z, Khatir B, O’Brien CP, Xu Y, Xiao YC, Waterhouse GIN, Golovin K, Wang Z, Sargent EH, Sinton D. Nat Catal, 2023, DOI:https://doi.org/10.1038/s41929-023-01003-5

  82. Nam DH, De Luna P, Rosas-Hernández A, Thevenon A, Li F, Agapie T, Peters JC, Shekhah O, Eddaoudi M, Sargent EH. Nat Mater, 2020, 19: 266–276

    Article  PubMed  CAS  Google Scholar 

  83. Lee G, Rasouli AS, Lee BH, Zhang J, Won DH, Xiao YC, Edwards JP, Lee MG, Jung ED, Arabyarmohammadi F, Liu H, Grigioni I, Abed J, Alkayyali T, Liu S, Xie K, Miao RK, Park S, Dorakhan R, Zhao Y, O’Brien CP, Chen Z, Sinton D, Sargent E. Joule, 2023, 7: 1277–1288

    Article  CAS  Google Scholar 

  84. Kong X, Wang C, Zheng H, Geng Z, Bao J, Zeng J. Sci China Chem, 2021, 64: 1096–1102

    Article  CAS  Google Scholar 

  85. Liu C, Gong J, Gao Z, Xiao L, Wang G, Lu J, Zhuang L. Sci China Chem, 2021, 64: 1660–1678

    Article  CAS  Google Scholar 

  86. Fan M, Miao RK, Ou P, Xu Y, Lin ZY, Lee TJ, Hung SF, Xie K, Huang JE, Ni W, Li J, Zhao Y, Ozden A, O’Brien CP, Chen Y, Xiao YC, Liu S, Wicks J, Wang X, Abed J, Shirzadi E, Sargent EH, Sinton D. Nat Commun, 2023, 14: 3314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Zhu P, Wu ZY, Elgazzar A, Dong C, Wi TU, Chen FY, Xia Y, Feng Y, Shakouri M, Kim JY, Fang Z, Hatton TA, Wang H. Nature, 2023, 618: 959–966

    Article  PubMed  CAS  Google Scholar 

  88. Martín AJ, Larrazábal GO, Pérez-Ramírez J. Green Chem, 2015, 17: 5114–5130

    Article  Google Scholar 

  89. De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. Science, 2020, 364: eaav3506

    Article  Google Scholar 

  90. Jin M, Zhang X, Niu S, Wang Q, Huang R, Ling R, Huang J, Shi R, Amini A, Cheng C. ACS Nano, 2022, 16: 11577–11597

    Article  PubMed  CAS  Google Scholar 

  91. Miller HA, Bouzek K, Hnat J, Loos S, Bernäcker CI, Weißgärber T, Röntzsch L, Meier-Haack J. Sustain Energy Fuels, 2020, 4: 2114–2133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.X. acknowledges the National Key Research and Development Program of China (2022YFB4102000), NSFC (22102018 and 52171201), the Natural Science Foundation of Sichuan Province (2022NSFSC0194), the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (2023C03017), the Huzhou Science and Technology Bureau (2022GZ45), the Hefei National Research Center for Physical Sciences at the Microscale (KF2021005), and the University of Electronic Science and Technology of China for startup funding (A1098531023601264). T.Z. acknowledges the NSFC (22278067 and 22322201), the Natural Science Foundation of Sichuan Province (2023NSFSC0094) and the University of Electronic Science and Technology of China for startup funding (A1098531023601356).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Zheng or Chuan Xia.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, H., Ji, Y. et al. Electrifying the future: the advances and opportunities of electrocatalytic carbon dioxide reduction in acid. Sci. China Chem. 66, 3426–3442 (2023). https://doi.org/10.1007/s11426-023-1799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1799-y

Navigation