Skip to main content
Log in

Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel molecular model of carbonyl-substituted phthalocyanine compounds used as the cathode material in a lithium-ion battery is demonstrated. Tetra-carboxyl and octa-carboxyl groups are substituted onto a phthalocyanine-conjugated system. The conductivities of phthalocyanine compounds are effectively improved by I2 doping, without affecting the capacity and energy density. Taking lithium as the counter-electrode, the electrochemical properties of the microparticles are investigated, and the electrochemical mechanism of carboxyl groups substituted with phthalocyanines is analyzed. The results indicate that carboxyl-substituted phthalocyanines have high specific capacities. After 20 or 50 cycles, they still retain capacities of about 300 and 500 mA · h/g for tetra-carboxyl- and octa-carboxyl-substituted phthalocyanines, respectively. The multiple carbonyl groups and the large numbers of electrons on the phthalocyanine-conjugated system are the two factors contributing to the high specific capacity.

A novel molecular model of carbonyl-substituted phthalocyanine compounds used as the cathode in a lithium-ion battery is demonstrated. Multiple carbonyl groups with high electrochemical activity are substituted onto a stable phthalocyanine-conjugated system, resulting in excellent conductivity and high specific capacity after using an iodine-doping technique; this could provide new ideas for electrode materials in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu HP, Shevlin SA, Meng QH, Guo W, Meng YN, Lv K, Wei ZX, Guo ZX (2014) Adv Mater 26(20):3338–3343

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

  3. Goodenough JB, Kim Y (2010) Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  4. Song ZP, Zhou HS (2013) Energy Environ Sci 6:2280–2301

    Article  CAS  Google Scholar 

  5. Kalhoff J, Eshetu GG, Bresser D, Passerini S (2015) Chemsuschem 8:2154–2175

    Article  CAS  Google Scholar 

  6. Liang YL, Tao ZL, Chen J (2012) Adv Energy Mater 2:742–769

    Article  CAS  Google Scholar 

  7. Zhang LX, Liu ZH, Cui GL, Chen LQ (2015) Prog Polym Sci 43:136–164

    Article  CAS  Google Scholar 

  8. Chen H, Armand M, Demailly G, Dolhem F, Poizot P, Tarascon JM (2008) ChemSusChem 1:348–355

    Article  CAS  Google Scholar 

  9. Morita Y, Nishida S, Murata T, Moriguchi M, Ueda A, Satoh M, Arifuku K, Sato K, Takui T (2011) Nat Mater 10:947–951

    Article  CAS  Google Scholar 

  10. Wang SW, Tao ZL, Chen J (2013) Chin Sci Bull (Chin Ver) 58:3132–3139

    Article  Google Scholar 

  11. Reddy ALM, Nagarajan S, Chumyim P (2012) Sci Rep 2:960–965

    Article  Google Scholar 

  12. Zeng RH, Li XP, Qiu YC (2010) Electrochem Commun 12:1253–1256

    Article  CAS  Google Scholar 

  13. Liang YL, Zhang P, Chen J (2013) Chem Sci 4:1330–1337

    Article  CAS  Google Scholar 

  14. Liang YL, Zhang P, Yang SQ (2013) Adv Energy Mater 3:600–605

    Article  CAS  Google Scholar 

  15. Wang WK, Zhang YY, Wang AB (2010) Acta Phys-Chem Sin 26:47–50

    Google Scholar 

  16. Geng JQ, Bonnet JP, Renault S (2010) Angew Chem Int Ed 49:8444–8448

    Article  Google Scholar 

  17. Xu LH, Yang F, Su C, Ji LL, Zhang C (2014) Electrochim Acta 130:148–155

    Article  CAS  Google Scholar 

  18. Gnedenkov SV, Opra DP, Sinebryukhov SL, Tsvetnikov AK, Ustinov AY, Sergienko VI (2015) J Solid State Electrochem 17:2611–2621

    Article  Google Scholar 

  19. Geng JQ, Bonnet JP, Renault S (2010) Energy Environ Sci 3:1929–1933

    Article  CAS  Google Scholar 

  20. Tobishima S, Yamaki J, Yamaji A (1984) J Electrochem Soc 131:57–63

    Article  CAS  Google Scholar 

  21. Han X, Qing G, Sun J, Sun T (2012) Angew Chem Int Ed 51:5147–5151

    Article  CAS  Google Scholar 

  22. Bu P, Liu SQ, Lu Y (2012) Int J Electrochem Sci 7:4617–4624

    CAS  Google Scholar 

  23. Zhao L, Wang WK, Wang AB, Yu ZB, Chen S, Yang YS (2011) J Electrochem Soc 158:991–996

    Article  Google Scholar 

  24. Genorio B, Pirnat K, Cerc-Korosec R (2010) Angew Chem Int Ed 49:7222–7224

    Article  CAS  Google Scholar 

  25. Luo C, Huang RM, Kevorkyants R, Pavanello M, He HX, Wang CS (2014) Nano Lett 14:1596–1602

    Article  CAS  Google Scholar 

  26. Chen HY, Armand M, Courty M (2009) J Am Chem Soc 131:8984–8988

    Article  CAS  Google Scholar 

  27. Wang SW, Wang LJ, Zhang K, Zhu ZQ, Tao ZL, Chen J (2013) Nano Lett 13:4404–4409

    Article  CAS  Google Scholar 

  28. Armand M, Grugeon S, Vezin H (2009) Nat Mater 8:120–125

    Article  CAS  Google Scholar 

  29. Renault S, Brandell D, Gustafsson T (2013) Chem Commun 49:1945–1947

    Article  CAS  Google Scholar 

  30. Renault S, Geng JQ, Dolhem F (2011) Chem Commun 47:2414–2416

    Article  CAS  Google Scholar 

  31. Kim DJ, Je SH, Sampath S (2012) Rsc Adv 2:7968–7970

    Article  CAS  Google Scholar 

  32. Gall LT, Reiman KH, Grossel MC (2003) J Power Sources 119:316–320

    Article  Google Scholar 

  33. Nokami T, Matsuo T, Inatomi Y (2012) J Am Chem Soc 134:19694–19700

    Article  CAS  Google Scholar 

  34. Haringer D, Novak P, Haas O (1999) J Electrochem Soc 146:2393–2396

    Article  CAS  Google Scholar 

  35. Song RH, Xiang LD, Qiu YC, Wang YT, Huang WN, Li WS, Yang SH (2014) Electrochim Acta 146:447–454

    Article  Google Scholar 

  36. Song ZP, Zhan H, Zhou YH (2009) Chem Commun 448–450

  37. Liu K, Zheng JM, Zhong GM (2011) J Mater Chem 21:4125–4131

    Article  CAS  Google Scholar 

  38. Xu J, Chen J, Chen L, Hu R, Wang SQ, Li SY, Ma JS, Yang GQ (2014) Dyes Pigments 109:144–150

    Article  CAS  Google Scholar 

  39. Chen J, Zhang T, Wang SQ, Hu R, Li SY, Ma JS, Yang GQ (2015) Spectrochim Acta A Mol Biomol Spectrosc 149:426–433

    Article  CAS  Google Scholar 

  40. Huang JH, Yang ZH, Wang SQ, Feng ZB (2015) J Solid State Electrochem 19:723–730

    Article  CAS  Google Scholar 

  41. Muhammed A, Burak E (2015) J Solid State Electrochem 19:2275–2281

    Article  Google Scholar 

  42. Yin HS, Deng JC, Xiang NJ (2006) Dyestuffs Coloration 143:17–19

    Google Scholar 

  43. Wang XJ, Huang ZH, Su ZM, Wang RS (1997) Chem J Chin Univ 18:1847–1850

    CAS  Google Scholar 

  44. Kobayashi N (2002) Coord Chem Rev 227:129–152

    Article  CAS  Google Scholar 

  45. Chen J, Wang SQ, Yang GQ (2015) Acta Phys -Chim Sin 31:595–611

    CAS  Google Scholar 

  46. Liu TM, Wang FL (1989) Acta Chim Sin 47:967–970

    CAS  Google Scholar 

  47. Yoshihiro A, Seizo M, Ken O, Takayuki A, Michiko M, Kiyotaka S (2000) Electrochim Acta 46:77–81

    Article  Google Scholar 

  48. Woehrle D, Kirschenmann M, Jaeger NJ (1985) J Electrochem Soc 132:1150–1152

    Article  CAS  Google Scholar 

  49. Morita Y, Nishida S, Akutagawa N, Satoh M, Takui T (2008) Abstr Symp Phys Org Chem 2008:384–385

    Google Scholar 

  50. Asai Y, Onishi K, Miyata S, Kim SJ, Matsumoto M, Shigehara K (2001) J Electrochem Soc 148(4):A305–A310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from the National Natural Science Foundation of China (E0210) and the Talent Foud of Jiangxi University of Science and Technology (3402228077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Chen, Shengwen Zhong or Shuangqing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, Q., Zeng, M. et al. Carboxyl-conjugated phthalocyanines used as novel electrode materials with high specific capacity for lithium-ion batteries. J Solid State Electrochem 20, 1285–1294 (2016). https://doi.org/10.1007/s10008-016-3126-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3126-6

Keywords

Navigation