Skip to main content
Log in

Geometry and applied statistics

  • Survey Paper
  • Published:
Information Geometry Aims and scope Submit manuscript

Abstract

We take a very high level overview of the relationship between Geometry and Applied Statistics 50 years from the birth of Information Geometry. From that date we look both backwards and forwards. We show that Geometry has always been part of the statistician’s toolbox and how it played a vital role in the evolution of Statistics in the last 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availibility

All data generated or analysed during this study are included in this published article.

References

  1. Čensov, N.N.: Statistical decision rules and optimal inference. Transl. Math. Mongr. 53 (1972)

  2. Plackett, R.L.: Studies in the history of probability and statistics. xxix: the discovery of the method of least squares. Biometrika 59(2), 239–251 (1972)

    MathSciNet  Google Scholar 

  3. Stigler, S.M.: Gauss and the invention of least squares. Ann. Stat., 465–474 (1981)

  4. Taylor, J.: The geometry of least squares in the 21st century. Bernoulli 19(4), 1449–1464 (2013)

    Article  MathSciNet  Google Scholar 

  5. Beran, R.: The unbearable transparency of Stein estimation. In: Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis, p. 25 (2010)

  6. Box, G.E.: Science and statistics. J. Am. Stat. Assoc. 71(356), 791–799 (1976)

    Article  MathSciNet  Google Scholar 

  7. Box, J.F.: R.A. Fisher and the design of experiments, 1922–1926. Am. Stat. 34(1), 1–7 (1980)

    MathSciNet  Google Scholar 

  8. Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4), 507–521 (1915)

    Google Scholar 

  9. Hall, N.S.: R.A. Fisher and his advocacy of randomization. J. Hist. Biol. 40(2), 295–325 (2007)

    Article  PubMed  Google Scholar 

  10. Aldrich, J.: RA Fisher and the making of maximum likelihood 1912–1922. Stat. Sci. 12(3), 162–176 (1997)

    Article  MathSciNet  Google Scholar 

  11. Fisher, R.A.: On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. Ser. A 222(594–604), 309–368 (1922)

    ADS  Google Scholar 

  12. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. In: Breakthroughs in Statistics, pp. 235–247. Springer, London (1992)

    Chapter  Google Scholar 

  13. Amari, S.: Differential Geometric Methods in Statistics. Lect. Notes Stat. Springer, Berlin (1985)

  14. Box, G.E., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodological) 26(2), 211–243 (1964)

    Google Scholar 

  15. Klein, F.: A comparative review of recent researches in geometry. Bull. Am. Math. Soc. 2(10), 215–249 (1893)

    Article  MathSciNet  Google Scholar 

  16. Hand, D.J.: Deconstructing statistical questions. J. R. Stat. Soc. Ser. A (Statistics in Society) 157(3), 317–338 (1994)

    Article  MathSciNet  Google Scholar 

  17. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946)

    Article  ADS  PubMed  Google Scholar 

  18. Aitchison, J.: The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B (Methodological) 44(2), 139–160 (1982)

    MathSciNet  Google Scholar 

  19. Aitchison, J.: Principles of compositional data analysis. Lecture Notes-Monograph Series, pp. 73–81 (1994)

  20. Agresti, A.: Categorical Data Analysis. Wiley, London (2003)

    Google Scholar 

  21. Kass, R.E., Vos, P.W.: Geometrical Foundations of Asymptotic Inference. Wiley, London (2011)

    Google Scholar 

  22. Geyer, C.J.: Likelihood inference in exponential families and directions of recession. Electron. J. Stat. 3, 259–289 (2009)

    Article  MathSciNet  Google Scholar 

  23. Rinaldo, A., Fienberg, S.E., Zhou, Y.: On the geometry of discrete exponential families with application to exponential random graph models. Electron. J. Stat. 3, 446–484 (2009)

    Article  MathSciNet  Google Scholar 

  24. Bishop, Y.M., Fienberg, S.E.: Incomplete two-dimensional contingency tables. Biometrics, 119–128 (1969)

  25. Kent, M., Bibby, J., Mardia, K.: Multivariate Analysis, Probability and Mathematical Statistics. Elsevier, Oxford (2006)

    Google Scholar 

  26. Barndorff-Nielsen, O.E.: Information and Exponential Families in Statistical Theory, p. 238. Wiley, London (1978)

    Google Scholar 

  27. Efron, B.: The geometry of exponential families. Ann. Stat., 362–376 (1978)

  28. Nelder, J.A., Wedderburn, R.W.: Generalized linear models. J. R. Stat. Soc. Ser. A (General) 135(3), 370–384 (1972)

    Article  Google Scholar 

  29. Mahalanobis, P.C.: On the Generalized Distance in Statistics. National Institute of Science of India (1936)

  30. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  31. Hellinger, E.: Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen. J. Die Reine Angew. Math. 1909(136), 210–271 (1909)

    Article  Google Scholar 

  32. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  33. Cressie, N., Read, T.R.: Multinomial goodness-of-fit tests. J. R. Stat. Soc. Ser. B (Methodol.) 46(3), 440–464 (1984)

    MathSciNet  Google Scholar 

  34. Eguchi, S.: A differential geometric approach to statistical inference on the basis of contrast functionals. Hiroshima Math. J. 15(2), 341–391 (1985)

    Article  MathSciNet  Google Scholar 

  35. Amari, S.-I., Barndorff-Nielsen, O.E., Kass, R., Lauritzen, S., Rao, C.: Differential geometry in statistical inference. IMS Lecture Notes-Monograph Series, p. 240 (1987)

  36. Dodson, C.T.: Geometrization of Statistical Theory: Proceedings of the GST Workshop, University of Lancaster Department of Mathematics, 28–31 October 1987. ULDM Publications, London (1987)

  37. Murray, M.K., Rice, J.W.: Differential Geometry and Statistics. Routledge, London (2017)

    Book  Google Scholar 

  38. Marriott, P., Salmon, M.: Applications of Differential Geometry to Econometrics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  39. Marriott, P., Vos, P.: On the global geometry of parametric models and information recovery. Bernoulli 10(4), 639–649 (2004)

    Article  MathSciNet  Google Scholar 

  40. Amari, S.-I., Nagaoka, H.: Methods of Information Geometry, vol. 191. American Mathematical Soc, New York (2007)

    Google Scholar 

  41. Vos, P.W., Marriott, P.: Geometry in statistics. Wiley Interdiscip. Rev. Comput. Stat. 2(6), 686–694 (2010)

    Article  Google Scholar 

  42. Nielsen, F., Bhatia, R.: Matrix Information Geometry. Springer, New York (2013)

    Book  Google Scholar 

  43. Nielsen, F.: Geometric Theory of Information. Springer, New York (2014)

    Book  Google Scholar 

  44. Efron, B.: Defining the curvature of a statistical problem (with applications to second order efficiency). Ann. Stat., 1189–1242 (1975)

  45. Critchley, F., Marriott, P.: Information geometry and its applications: an overview. Comput. Inf. Geom., 1–31 (2017)

  46. Barndorff-Nielsen, O.E.: Infereni on full or partial parameters based on the standardized signed log likelihood ratio. Biometrika 73(2), 307–322 (1986)

    MathSciNet  Google Scholar 

  47. Cox, D.R., Reid, N.: Parameter orthogonality and approximate conditional inference. J. R. Stat. Soc. Ser. B (Methodol.) 49(1), 1–18 (1987)

    MathSciNet  Google Scholar 

  48. Pierce, D.A., Peters, D.: Practical use of higher order asymptotics for multiparameter exponential families. J. R. Stat. Soc. Ser. B (Methodol.) 54(3), 701–725 (1992)

    MathSciNet  Google Scholar 

  49. McCullagh, P., Tibshirani, R.: A simple method for the adjustment of profile likelihoods. J. R. Stat. Soc. Ser. B (Methodol.) 52(2), 325–344 (1990)

    MathSciNet  Google Scholar 

  50. Barndorff-Nielsen, O., Blaesild, P.: Exponential models with affine dual foliations. Ann. Stat., 753–769 (1983)

  51. Barndorff-Nielsen, O.E., Koudou, A.E.: Cuts in natural exponential families. Theory Probab. Appl. 40(2), 220–229 (1996)

    Article  MathSciNet  Google Scholar 

  52. Gelman, A., Vehtari, A.: What are the most important statistical ideas of the past 50 years? J. Am. Stat. Assoc. 116(536), 2087–2097 (2021)

    Article  MathSciNet  CAS  Google Scholar 

  53. Donoho, D.: 50 years of data science. J. Comput. Gr. Stat. 26(4), 745–766 (2017)

    Article  MathSciNet  Google Scholar 

  54. James, W., Stein, C.: Estimation with quadratic loss. In: Breakthroughs in Statistics, pp. 443–460. Springer, London (1992)

    Chapter  Google Scholar 

  55. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  Google Scholar 

  56. Brown, L.D., Zhao, L.H.: A geometrical explanation of Stein shrinkage. Stat. Sci. 27(1), 24–30 (2012)

    Article  MathSciNet  Google Scholar 

  57. Hoaglin, D.C.: John W. Tukey and data analysis. Stat. Sci., 311–318 (2003)

  58. Wasserman, L.: Topological data analysis. Annu. Rev. Stat. Appl. 5, 501–532 (2018)

    Article  MathSciNet  Google Scholar 

  59. Donoho, D., Tanner, J.: Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1906), 4273–4293 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  60. Stigler, S.M.: The changing history of robustness. Am. Stat. 64(4), 277–281 (2010)

    Article  MathSciNet  Google Scholar 

  61. Lindsay, B.G.: Efficiency versus robustness: the case for minimum hellinger distance and related methods. Ann. Stat. 22(2), 1081–1114 (1994)

    Article  MathSciNet  Google Scholar 

  62. Efron, B.: The Jackknife, the Bootstrap and Other Resampling Plans. SIAM, New York (1982)

    Book  Google Scholar 

  63. Efron, B.: Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68(3), 589–599 (1981)

    Article  MathSciNet  Google Scholar 

  64. DiCiccio, T.J., Efron, B.: Bootstrap confidence intervals. Stat. Sci. 11(3), 189–228 (1996)

    Article  MathSciNet  Google Scholar 

  65. Barndorff-Nielsen, O.E., Cox, D.R.: Asymptotic Techniques for Use in Statistics. Chapman and Hall, London (1989)

    Book  Google Scholar 

  66. Cox, D.R., Barndorff-Nielsen, O.E.: Inference and Asymptotics, vol. 52. CRC Press, London (1994)

    Google Scholar 

  67. McCullagh, P.: Tensor Methods in Statistics. Chapman and Hall/CRC, London (2018)

    Book  Google Scholar 

  68. Stein, C., et al.: Efficient nonparametric testing and estimation. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 187–195 (1956)

  69. Lunn, D., Jackson, C., Best, N., Thomas, A., Spiegelhalter, D.: The Bugs Book. A Practical Introduction to Bayesian Analysis. Chapman Hall, London (2013)

    Google Scholar 

  70. Stan Development Team and others: Stan modeling language users guide and reference manual. Technical report (2016)

  71. Betancourt, M.: A Conceptual Introduction to Hamiltonian Monte Carlo. arXiv (2017)

  72. Betancourt, M., Byrne, S., Livingstone, S., Girolami, M.: The geometric foundations of Hamiltonian Monte Carlo. Bernoulli 23(4A), 2257–2298 (2017)

    Article  MathSciNet  Google Scholar 

  73. Breiman, L.: Statistical modeling: The two cultures (with comments and a rejoinder by the author). Stat. Sci. 16(3), 199–231 (2001)

    Article  Google Scholar 

  74. Cox, D.R.: Role of models in statistical analysis. Stat. Sci. 5(2), 169–174 (1990)

    Article  MathSciNet  Google Scholar 

  75. Cox, D.R.: Comment on ‘Assessment of local influence’ by R. D. Cook. J. R. Stat. Soc. Ser. B (Methodol.), 133–169 (1986)

  76. Li, P., Chen, J., Marriott, P.: Non-finite Fisher information and homogeneity: an em approach. Biometrika 96(2), 411–426 (2009)

    Article  MathSciNet  Google Scholar 

  77. Brown, L.D.: Fundamentals of statistical exponential families with applications in statistical decision theory. IMS Lecture Notes-monograph series (1986)

  78. Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)

    Book  Google Scholar 

  79. Csiszár, I., Matus, F.: Closures of exponential families. Ann. Probab. 33(2), 582–600 (2005)

    Article  MathSciNet  Google Scholar 

  80. Critchley, F., Marriott, P.: Computational information geometry in statistics: theory and practice. Entropy 16, 2454–2471 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  81. Anaya-Izquierdo, K., Critchley, F., Marriott, P.: When are first-order asymptotics adequate? a diagnostic. Stat 3(1), 17–22 (2014)

    Article  MathSciNet  Google Scholar 

  82. Marriott, P.: On the local geometry of mixture models. Biometrika 89(1), 77–93 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Qingyuan Zhao for information on the background of Fisher’s work and Frank Critchley for many helpful comments as the paper was prepared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Marriott.

Ethics declarations

Conflict of interest

The author is on the Editorial Board of Information Geometry. The author states there are no other conflicts of interest.

Additional information

Communicated by Shinto Eguchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marriott, P. Geometry and applied statistics. Info. Geo. 7 (Suppl 1), 211–227 (2024). https://doi.org/10.1007/s41884-022-00086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41884-022-00086-6

Keywords

Navigation