Skip to main content
Log in

A Comprehensive FIB Lift-out Sample Preparation Method for Scanning Probe Microscopy

  • Original Article
  • Published:
Nanomanufacturing and Metrology Aims and scope Submit manuscript

A Correction to this article was published on 24 November 2022

This article has been updated

Abstract

In this work, we investigate cross-sectional sample preparation for atomic force microscopy and general scanning probe microscopy (SPM) characterization. In light of traditional cross-sectional sample preparation solutions for transmission electron microscopy, mechanical polishing and focused ion beam (FIB) milling have been employed to prepare cross-sectional samples for SPM. We present an optimized solution for thin films and oxide heterostructures that allows for examining the prepared surfaces using various SPM techniques. In particular, post-cleaning after FIB milling is shown to be crucial and precision ion polishing was conducted to remove rough layers on mechanically polished samples. We also study SPM mechanical milling to remove amorphous layers on FIB-milled samples. Consequently, a reliable solution for making cross sections suitable for SPM has been achieved providing a useful methodology that can also be employed for other material systems with different hardness, such as polymers and metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Chen M, Zhao H, Fang H, Zhang Y (2017) Cross-sectional information on pore structure and element distribution of sediment particles by SEM and EDS. Scanning 2017:7. https://doi.org/10.1155/2017/9876935

    Article  Google Scholar 

  2. Katayanagi Y, Shimizu T, Hashimasa Y, Matsushita N, Yamazaki Y, Yamaguchi T (2015) Cross-sectional observation of nanostructured catalyst layer of polymer electrolyte fuel cell using FIB/SEM. J Power Sources 280:210–216. https://doi.org/10.1016/j.jpowsour.2015.01.085

    Article  Google Scholar 

  3. Zhang C, Hirt DE (2007) Layer-by-layer self-assembly of polyelectrolyte multilayers on cross-section surfaces of multilayer polymer films: a step toward nano-patterning flexible substrates. Polymer 48:6748–6754. https://doi.org/10.1016/j.polymer.2007.09.024

    Article  Google Scholar 

  4. López-Marino S, Placidi M, Pérez-Tomás A, Llobet J, Izquierdo-Roca V, Fontané X, Fairbrother A, Espíndola-Rodríguez M, Sylla D, Pérez-Rodríguez A, Saucedo E (2013) Inhibiting the absorber/Mo-back contact decomposition reaction in Cu2ZnSnSe4 solar cells: the role of a ZnO intermediate nanolayer. J Mater Chem A 1:8338–8343. https://doi.org/10.1039/C3TA11419H

    Article  Google Scholar 

  5. Zhang F, Edwards D, Deng X, Wang Y, Kilpatrick JI, Bassiri-Gharb N, Kumar A, Chen D, Gao X, Rodriguez BJ (2020) Investigation of AFM-based machining of ferroelectric thin films at the nanoscale. J Appl Phys 127:034103. https://doi.org/10.1063/1.5133018

    Article  Google Scholar 

  6. Silvan MM, Langlet M, Duart JM, Herrero P (2007) Preparation of interfaces for TEM cross-section observation. Nucl Instrum Methods Phys Res Sect B 257:623–626. https://doi.org/10.1016/j.nimb.2007.01.262

    Article  Google Scholar 

  7. Takagi Y, Yonezu H, Samonji K, Tsuji T, Ohshima N (1998) Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si (100) substrates. J Cryst Growth 187:42–50. https://doi.org/10.1016/S0022-0248(97)00862-2

    Article  Google Scholar 

  8. Miao F, Strachan JP, Yang JJ, Zhang MX, Goldfarb I, Torrezan AC, Eschbach P, Kelley RD, Medeiros-Ribeiro G, Williams RS (2011) Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv Mater 23:5633–5640. https://doi.org/10.1002/adma.201103379

    Article  Google Scholar 

  9. Liu Y, Wang Y-J, Zhu Y-L, Lei C-H, Tang Y-L, Li S, Zhang S-R, Li J, Ma X-L (2017) Large scale two-dimensional flux-closure domain arrays in oxide multilayers and their controlled growth. Nano Lett 17:7258–7266. https://doi.org/10.1021/acs.nanolett.7b02615

    Article  Google Scholar 

  10. Liu Y, Zhu Y-L, Tang Y-L, Wang Y-J, Jiang Y-X, Xu Y-B, Zhang B, Ma X-L (2017) Local enhancement of polarization at PbTiO3/BiFeO3 interfaces mediated by charge transfer. Nano Lett 17:3619–3628. https://doi.org/10.1021/acs.nanolett.7b00788

    Article  Google Scholar 

  11. Han MJ, Eliseev EA, Morozovska AN, Zhu YL, Tang YL, Wang YJ, Guo XW, Ma XL (2019) Mapping gradient-driven morphological phase transition at the conductive domain walls of strained multiferroic films. Phys Rev B 100:104109. https://doi.org/10.1103/PhysRevB.100.104109

    Article  Google Scholar 

  12. Han MJ, Tang YL, Wang YJ, Zhu YL, Ma JY, Geng WR, Feng YP, Zou MJ, Zhang NB, Ma XL (2020) Charged domain wall modulation of resistive switching with large ON/OFF ratios in high density BiFeO3 nano-islands. Acta Mater 187:12–18. https://doi.org/10.1016/j.actamat.2020.01.034

    Article  Google Scholar 

  13. Seidel J, Vasudevan RK, Valanoor N (2016) Topological structures in multiferroics—domain walls, skyrmions and vortices. Adv Electron Mater 2:1500292. https://doi.org/10.1002/aelm.201500292

    Article  Google Scholar 

  14. Haigh SJ, Gholinia A, Jalil R, Romani S, Britnell L, Elias DC, Novoselov KS, Ponomarenko LA, Geim AK, Gorbachev R (2012) Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat Mater 11:764–767. https://doi.org/10.1038/nmat3386

    Article  Google Scholar 

  15. Martens T, d’Haen J, Munters T, Beelen Z, Goris L, Manca J, d’Olieslaeger M, Vanderzande D, De Schepper L, Andriessen R (2003) Disclosure of the nanostructure of MDMO-PPV: PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM. Synth Met 138:243–247. https://doi.org/10.1016/S0379-6779(02)01311-5

    Article  Google Scholar 

  16. Cui P, Wei D, Ji J, Huang H, Jia E, Dou S, Wang T, Wang W, Li M (2019) Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat Energy 4:150–159. https://doi.org/10.1038/s41560-018-0324-8

    Article  Google Scholar 

  17. Zhang Y, Lu H, Xie L, Yan X, Paudel TR, Kim J, Cheng X, Wang H, Heikes C, Li L, Xu M, Schlom DG, Chen L-Q, Wu R, Tsymbal EY, Gruverman A, Pan X (2018) Anisotropic polarization-induced conductance at a ferroelectric–insulator interface. Nat Nanotechnol 13:1132–1136. https://doi.org/10.1038/s41565-018-0259-z

    Article  Google Scholar 

  18. Basletic M, Maurice JL, Carrétéro C, Herranz G, Copie O, Bibes M, Jacquet É, Bouzehouane K, Fusil S, Barthélémy A (2008) Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat Mater 7:621–625. https://doi.org/10.1038/nmat2223

    Article  Google Scholar 

  19. Glatzel T, Marrón DF, Schedel-Niedrig T, Sadewasser S, Lux-Steiner MC (2002) CuGaSe2 solar cell cross section studied by Kelvin probe force microscopy in ultrahigh vacuum. Appl Phys Lett 81:2017–2019. https://doi.org/10.1063/1.1506205

    Article  Google Scholar 

  20. Masuda H, Ishida N, Ogata Y, Ito D, Fujita D (2017) Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy. Nanoscale 9:893–898. https://doi.org/10.1039/C6NR07971G

    Article  Google Scholar 

  21. Komura M, Iyoda T (2007) AFM cross-sectional imaging of perpendicularly oriented nanocylinder structures of microphase-separated block copolymer films by crystal-like cleavage. Macromolecules 40:4106–4108. https://doi.org/10.1021/ma0704008

    Article  Google Scholar 

  22. Bergmann VW, Weber SAL, Javier Ramos F, Nazeeruddin MK, Grätzel M, Li D, Domanski AL, Lieberwirth I, Ahmad S, Berger R (2014) Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat Commun 5:5001. https://doi.org/10.1038/ncomms6001

    Article  Google Scholar 

  23. Goldstein JI, Newbury DE, Echlin P, Joy DC, Fiori C, Lifshin E (1981) Electron-beam-specimen interactions. In: Goldstein JI (ed) Scanning electron microscopy and X-ray microanalysis. Springer, Boston, pp 53–122

    Chapter  Google Scholar 

  24. Yang H-H, Lee C-C, Yoshida Y, Ikhlas M, Tomita T, Nugroho A, Ozaki T, Nakatsuji S, Hasegawa Y (2019) Scanning tunneling microscopy on cleaved Mn3Sn (0001) surface. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-019-45958-7

    Article  Google Scholar 

  25. Tang S, Kasowski R, Subramanian M, Hsu W (1988) Scanning tunneling microscopy of the cleaved surface of Bi2Sr2CaCu2O8. Physica C 156:177–183. https://doi.org/10.1016/0921-4534(88)90124-4

    Article  Google Scholar 

  26. Schmitz-Hübsch T, Fritz T, Sellam F, Staub R, Leo K (1997) Epitaxial growth of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride on Au (111): A STM and RHEED study. Phys Rev B 55:7972. https://doi.org/10.1103/PhysRevB.55.7972

    Article  Google Scholar 

  27. Jacobi K (2003) Atomic structure of InAs quantum dots on GaAs. Prog Surf Sci 71:185–215. https://doi.org/10.1016/S0079-6816(03)00007-8

    Article  Google Scholar 

  28. Magri R, Zunger A (2002) Effects of interfacial atomic segregation and intermixing on the electronic properties of InAs/GaSb superlattices. Phys Rev B 65:165302. https://doi.org/10.1103/PhysRevB.65.165302

    Article  Google Scholar 

  29. Magri R, Zunger A (2001) Effects of interfacial atomic segregation on optical properties of InAs/GaSb superlattices. Phys Rev B 64:081305. https://doi.org/10.1103/PhysRevB.64.081305

    Article  Google Scholar 

  30. Ongstad AP, Dente GC, Tilton ML, Gianardi D, Turner G (2000) Linewidth analysis of the photoluminescence from InAs/GaSb/InAs/AlSb type-II superlattices. J Appl Phys 87:7896–7902. https://doi.org/10.1063/1.373473

    Article  Google Scholar 

  31. Pia AD, Costantini G (2016) Scanning tunneling microscopy. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 3531–3543

    Chapter  Google Scholar 

  32. Park JY (2012) Scanning tunneling microscopy. Character Mater. https://doi.org/10.1002/0471266965.com084.pub2

    Article  Google Scholar 

  33. Erdman N, Campbell R, Asahina S (2006) Precise SEM cross section polishing via argon beam milling. Microsc Today 14:22–25. https://doi.org/10.1017/S155192950005762X

    Article  Google Scholar 

  34. Pippan R, Hohenwarter A (2016) The importance of fracture toughness in ultrafine and nanocrystalline bulk materials. Mater Res Lett 4:127–136. https://doi.org/10.1080/21663831.2016.1166403

    Article  Google Scholar 

  35. Lee S-J, Lee Y-M, Du M-F (2003) The polishing mechanism of electrochemical mechanical polishing technology. J Mater Process Technol 140:280–286. https://doi.org/10.1016/S0924-0136(03)00720-9

    Article  Google Scholar 

  36. Ein-Eli Y, Starosvetsky D (2007) Review on copper chemical–mechanical polishing (CMP) and post-CMP cleaning in ultra large system integrated (ULSI)—An electrochemical perspective. Electrochim Acta 52:1825–1838. https://doi.org/10.1016/j.electacta.2006.07.039

    Article  Google Scholar 

  37. Barbosa FOG, Gomes JA, de Araújo MCP (2008) Influence of electrochemical polishing on the mechanical properties of K3 nickel-titanium rotary instruments. J Endodont 34:1533–1536. https://doi.org/10.1016/j.joen.2008.08.023

    Article  Google Scholar 

  38. Elmore W (1939) Electrolytic polishing. J Appl Phys 10:724–727. https://doi.org/10.1063/1.1707257

    Article  Google Scholar 

  39. Elmore W (1940) Electrolytic polishing. II. J Appl Phys 11:797–799. https://doi.org/10.1063/1.1712738

    Article  Google Scholar 

  40. Jung J-H, Park H-K, Lee BS, Choi J, Seo B, Kim HK, Kim GH, Kim HG (2017) Study on surface shape control of pure Ti fabricated by electron beam melting using electrolytic polishing. Surf Coat Technol 324:106–110. https://doi.org/10.1016/j.surfcoat.2017.05.061

    Article  Google Scholar 

  41. Tuck B (1975) The chemical polishing of semiconductors. J Mater Sci 10:321–339. https://doi.org/10.1007/BF00540357

    Article  Google Scholar 

  42. Weyher J, Müller S, Grzegory I, Porowski S (1997) Chemical polishing of bulk and epitaxial GaN. J Cryst Growth 182:17–22. https://doi.org/10.1016/S0022-0248(97)00320-5

    Article  Google Scholar 

  43. Nanz G, Camilletti LE (1995) Modeling of chemical-mechanical polishing: a review. IEEE Trans Semicond Manuf 8:382–389. https://doi.org/10.1109/66.475179

    Article  Google Scholar 

  44. Loucks RG, Reed RM, Ruppel SC, Jarvie DM (2009) Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J Sediment Res 79:848–861. https://doi.org/10.2110/jsr.2009.092

    Article  Google Scholar 

  45. Jin T, Ma M, Li B, Gao Y, Zhao Q, Zhao Z, Chen J, Tian Y (2020) Mechanical polishing of ultrahard nanotwinned diamond via transition into hard sp2-sp3 amorphous carbon. Carbon 161:1–6. https://doi.org/10.1016/j.carbon.2020.01.041

    Article  Google Scholar 

  46. Mayer J, Giannuzzi LA, Kamino T, Michael J (2007) TEM sample preparation and FIB-induced damage. MRS Bull 32:400–407. https://doi.org/10.1557/mrs2007.63

    Article  Google Scholar 

  47. Ayache J, Beaunier L, Boumendil J, Ehret G, Laub D (2010) Sample preparation handbook for transmission electron microscopy: techniques. Springer, New York

    Book  Google Scholar 

  48. Zhang Y, Lu H, Yan X, Cheng X, Xie L, Aoki T, Li L, Heikes C, Lau SP, Schlom DG, Chen L, Gruverman A, Pan X (2019) Intrinsic conductance of domain walls in BiFeO3. Adv Mater 31:1902099. https://doi.org/10.1002/adma.201902099

    Article  Google Scholar 

  49. Tao T, Ro J, Melngailis J, Xue Z, Kaesz HD (1990) Focused ion beam induced deposition of platinum. J Vacuum Sci Technol B Microelectron Process Phenomena 8:1826–1829. https://doi.org/10.1116/1.585167

    Article  Google Scholar 

  50. Zlatar M, Allan M, Fedor J (2016) Excited states of Pt(PF3)4 and their role in focused electron beam nanofabrication. J Phys Chem C 120:10667–10674. https://doi.org/10.1021/acs.jpcc.6b02660

    Article  Google Scholar 

  51. Cullen DA, Smith DJ (2008) Assessment of surface damage and sidewall implantation in AlGaN-based high electron mobility transistor devices caused during focused-ion-beam milling. J Appl Phys 104:094304. https://doi.org/10.1063/1.3006626

    Article  Google Scholar 

  52. Stanishevsky A, Aggarwal S, Prakash AS, Melngailis J, Ramesh R (1998) Focused ion-beam patterning of nanoscale ferroelectric capacitors. J Vacuum Sci Technol B Microelectron Nanometer Struct Process Meas Phenomena 16:3899–3902. https://doi.org/10.1116/1.590431

    Article  Google Scholar 

  53. Ganpule CS, Stanishevsky A, Aggarwal S, Melngailis J, Williams E, Ramesh R, Joshi V, Paz de Araujo C (1999) Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films. Appl Phys Lett 75:3874–3876. https://doi.org/10.1063/1.125485

    Article  Google Scholar 

  54. Stanishevsky A, Nagaraj B, Melngailis J, Ramesh R, Khriachtchev L, McDaniel E (2002) Radiation damage and its recovery in focused ion beam fabricated ferroelectric capacitors. J Appl Phys 92:3275–3278. https://doi.org/10.1063/1.1489069

    Article  Google Scholar 

  55. Nagarajan V, Stanishevsky A, Ramesh R (2005) Ferroelectric nanostructures via a modified focused ion beam technique. Nanotechnology 17:338–343. https://doi.org/10.1088/0957-4484/17/1/058

    Article  Google Scholar 

  56. Saad M, Baxter P, Bowman R, Gregg J, Morrison F, Scott J (2004) Intrinsic dielectric response in ferroelectric nano-capacitors. J Phys Condens Matter 16:L451. https://doi.org/10.1088/0953-8984/16/41/L04

    Article  Google Scholar 

  57. Schilling A, Adams T, Bowman R, Gregg J (2007) Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures. Nanotechnology 18:035301. https://doi.org/10.1088/0957-4484/18/3/035301

    Article  Google Scholar 

  58. Han Z, Vehkamäki M, Mattinen M, Salmi E, Mizohata K, Leskelä M, Ritala M (2015) Selective etching of focused gallium ion beam implanted regions from silicon as a nanofabrication method. Nanotechnology 26:265304. https://doi.org/10.1088/0957-4484/26/26/265304

    Article  Google Scholar 

  59. Tseng AA, Jou S, Notargiacomo A, Chen T (2008) Recent developments in tip-based nanofabrication and its roadmap. J Nanosci Nanotechnol 8:2167–2186. https://doi.org/10.1166/jnn.2008.243

    Article  Google Scholar 

  60. Tseng AA (2010) A comparison study of scratch and wear properties using atomic force microscopy. Appl Surf Sci 256:4246–4252. https://doi.org/10.1016/j.apsusc.2010.02.010

    Article  Google Scholar 

  61. Ji F, Sharma P, Xin T, Zhang D, Liu Y, Niu R, Cairney JM, Seidel J (2020) Lateral gating of 2D electron gas in cross-sectional LaAlO3/SrTiO3. Adv Electron Mater 6:2000068. https://doi.org/10.1002/aelm.202000068

    Article  Google Scholar 

  62. Ohtomo A, Hwang H (2004) A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–426. https://doi.org/10.1038/nature02308

    Article  Google Scholar 

  63. Thiel S, Hammerl G, Schmehl A, Schneider CW, Mannhart J (2006) Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313:1942–1945. https://doi.org/10.1126/science.1131091

    Article  Google Scholar 

  64. Reyren N, Thiel S, Caviglia A, Kourkoutis LF, Hammerl G, Richter C, Schneider CW, Kopp T, Rüetschi A-S, Jaccard D (2007) Superconducting interfaces between insulating oxides. Science 317:1196–1199. https://doi.org/10.1126/science.1146006

    Article  Google Scholar 

  65. Caviglia A, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J-M (2008) Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456:624–627. https://doi.org/10.1038/nature07576

    Article  Google Scholar 

  66. Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J, van der Wiel WG, Rijnders G, Blank DH, Hilgenkamp H (2007) Magnetic effects at the interface between non-magnetic oxides. Nat Mater 6:493–496. https://doi.org/10.1038/nmat1931

    Article  Google Scholar 

  67. Bi F, Huang M, Ryu S, Lee H, Bark C-W, Eom C-B, Irvin P, Levy J (2014) Room-temperature electronically-controlled ferromagnetism at the LaAlO3/SrTiO3 interface. Nat Commun 5:1–7. https://doi.org/10.1038/ncomms6019

    Article  Google Scholar 

  68. Bert JA, Kalisky B, Bell C, Kim M, Hikita Y, Hwang HY, Moler KA (2011) Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat Phys 7:767–771. https://doi.org/10.1038/nphys2079

    Article  Google Scholar 

  69. Li L, Richter C, Mannhart J, Ashoori R (2011) Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat Phys 7:762–766. https://doi.org/10.1038/nphys2080

    Article  Google Scholar 

  70. Schoofs F, Carpenter MA, Vickers ME, Egilmez M, Fix T, Kleibeuker JE, MacManus-Driscoll JL, Blamire MG (2013) Carrier density modulation by structural distortions at modified LaAlO3/SrTiO3 interfaces. J Phys Condens Matter 25:175005. https://doi.org/10.1088/0953-8984/25/17/175005

  71. Lee P, Singh V, Guo G, Liu H-J, Lin J-C, Chu Y-H, Chen C, Chu M-W (2016) Hidden lattice instabilities as origin of the conductive interface between insulating LaAlO3 and SrTiO3. Nat Commun 7:12773. https://doi.org/10.1038/ncomms12773

    Article  Google Scholar 

  72. Sharma P, Huang Z, Li M, Li C, Hu S, Lee H, Lee JW, Eom CB, Pennycook SJ, Seidel J (2018) Oxygen stoichiometry effect on polar properties of LaAlO3/SrTiO3. Adv Func Mater 28:1707159. https://doi.org/10.1002/adfm.201707159

    Article  Google Scholar 

  73. Bark C, Sharma P, Wang Y, Baek SH, Lee S, Ryu S, Folkman C, Paudel TR, Kumar A, Kalinin SV (2012) Switchable induced polarization in LaAlO3/SrTiO3 heterostructures. Nano Lett 12:1765–1771. https://doi.org/10.1021/nl3001088

    Article  Google Scholar 

  74. Huang M, Bi F, Bark C-W, Ryu S, Cho K-H, Eom C-B, Levy J (2014) Non-local piezoresponse of LaAlO3/SrTiO3 heterostructures. Appl Phys Lett 104:161606. https://doi.org/10.1063/1.4873125

    Article  Google Scholar 

  75. Das S, Wang B, Cao Y, Rae Cho M, Jae Shin Y, Mo Yang S, Wang L, Kim M, Kalinin SV, Chen L-Q, Noh TW (2017) Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity. Nat Commun 8:615. https://doi.org/10.1038/s41467-017-00710-5

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the Australian Research Council through Discovery Grants and the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET). The authors also acknowledge the facilities and the scientific and technical assistance of Microscopy Australia at the Electron Microscope Unit (EMU) within the Mark Wainwright Analytical Centre (MWAC) at UNSW Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Seidel.

Ethics declarations

Conflict of interest

The authors declare no conficts of interest.

Additional information

The original online version of this article was revised: The declaration text was missing

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, F., Yao, Y., Xin, T. et al. A Comprehensive FIB Lift-out Sample Preparation Method for Scanning Probe Microscopy. Nanomanuf Metrol 5, 67–79 (2022). https://doi.org/10.1007/s41871-021-00107-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41871-021-00107-5

Keywords

Navigation