Skip to main content
Log in

Critical fractional elliptic equations with exponential growth

  • Published:
Journal of Elliptic and Parabolic Equations Aims and scope Submit manuscript

Abstract

In this paper we establish, using variational methods combined with the Moser–Trudinger inequality, existence and multiplicity of weak solutions for a class of critical fractional elliptic equations with exponential growth without a Ambrosetti–Rabinowitz-type condition. The interaction of the nonlinearities with the spectrum of the fractional operator will be used to study the existence and multiplicity of solutions. The main technical result proves that a local minimum in \(C_{s}^0 (\overline{\Omega })\) is also a local minimum in \(W^{s,p}_0\) for exponentially growing nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Carrião, P.C., Miyagaki, O.H.: Nontrivial solutions of a class of quasilinear elliptic problems involving critical exponents. In: Nonlinear Equations: Methods, Models and Applications (Bergamo, 2001). Progr. Nonlinear Differential Equations Appl., vol. 54, pp. 225–238. Birkhäuser, Basel (2003)

  2. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519–543 (1994)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Garcia Azorero, J., Peral, I.: Existence and multiplicity results for some nonlinear elliptic equations: a survey. Rend. Mat. Appl. (7) 20, 167–198 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \({\mathbb{R}}^N\). J. Differ. Equ. 255(8), 2340–2362 (2013)

    Article  Google Scholar 

  5. Bahrouni, A.: Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Commun. Pure Appl. Anal. 16(1), 243–252 (2017)

    Article  MathSciNet  Google Scholar 

  6. Barrios, B., Colorado, E., de Pablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252(11), 6133–6162 (2012)

    Article  MathSciNet  Google Scholar 

  7. Barrios, B., Colorado, E., Servadei, R., Soria, F.: A critical fractional equation with concave-convex power nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(4), 875–900 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bartolo, R., Molica Bisci, G.: Asymptotically linear fractional \(p\)-Laplacian equations. Ann. Mat. Pura Appl. (4) 196(2), 427–442 (2017)

    Article  MathSciNet  Google Scholar 

  9. Brändle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 143(1), 39–71 (2013)

    Article  MathSciNet  Google Scholar 

  10. Capozzi, A., Fortunato, D., Palmieri, G.: An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 2(6), 463–470 (1985)

    Article  MathSciNet  Google Scholar 

  11. Caffarelli, L.: Non-local diffusions, drifts and games. Nonlinear Partial Differential Equations, Abel Symp., vol. 7, pp. 37–52. Springer, Heidelberg (2012)

  12. Chabrowski, J., Yang, J.: On the Neumann problem with combined nonlinearities. Ann. Polon. Math. 85(3), 239–250 (2005)

    Article  MathSciNet  Google Scholar 

  13. Chen, W., Squassina, M.: Critical nonlocal systems with concave-convex powers. Adv. Nonlinear Stud. 16(4), 821–842 (2016)

    Article  MathSciNet  Google Scholar 

  14. Colorado, E., Peral, I.: Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions. J. Funct. Anal. 199(2), 468–507 (2002)

    Article  MathSciNet  Google Scholar 

  15. Costa, D.G., Magalhães, C.A.: Variational elliptic problems which are nonquadratic at infinity. Nonlinear Anal. 23(11), 1401–1412 (1994)

    Article  MathSciNet  Google Scholar 

  16. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \({\mathbb{R}}^2\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3(2), 139–153 (1995)

    Article  Google Scholar 

  17. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in \({\mathbb{R}}^2\) with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 4(2), 203 (1996)

    MATH  Google Scholar 

  18. de Figueiredo, D.G., Yang, J.: Critical superlinear Ambrosetti–Prodi problems. Topol. Methods Nonlinear Anal. 14(1), 59–80 (1999)

    Article  MathSciNet  Google Scholar 

  19. de Figueiredo, D.G., do Ó, J.M., Ruf, B.: On an inequality by N. Trudinger and J. Moser and related elliptic equations. Commun. Pure Appl. Math. 55(2), 135–152 (2002)

    Article  MathSciNet  Google Scholar 

  20. de Paiva, F.O., Massa, E.: Multiple solutions for some elliptic equations with a nonlinearity concave at the origin. Nonlinear Anal. 66(12), 2940–2946 (2007)

    Article  MathSciNet  Google Scholar 

  21. de Paiva, F.O., Presoto, A.E.: Semilinear elliptic problems with asymmetric nonlinearities. J. Math. Anal. Appl. 409(1), 254–262 (2014)

    Article  MathSciNet  Google Scholar 

  22. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev Space. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  23. Giacomoni, J., Prashanth, S., Sreenadh, K.: \(W^{1, N}\) versus \(C^1\) local minimizers for elliptic functionals with critical growth in \({\mathbb{R}}^N\). C. R. Math. Acad. Sci. Paris 347(5–6), 255–260 (2009)

    Article  MathSciNet  Google Scholar 

  24. Huang, L., Yang, Y.: Asymmetric critical fractional \(p\)-Laplacian problems. Electron. J. Differ. Equ. 103, 12 (2017)

  25. Iannizzotto, A., Mosconi, S., Squassina, M.: Global Hölder regularity for the fractional \(p\)-Laplacian. Rev. Mat. Iberoam. 32(4), 1353–1392 (2016)

    Article  MathSciNet  Google Scholar 

  26. Iannizzotto, A., Squassina, M.: 1/2-Laplacian problem with exponential nonlinearity. J. Math. Anal. Appl. 414(1), 372–385 (2014)

    Article  MathSciNet  Google Scholar 

  27. Iannizzotto, A., Squassina, M.: Weyl-type laws for fractional \(p\)-eigenvalue problems. Asymptot. Anal. 88(4), 233–245 (2014)

    Article  MathSciNet  Google Scholar 

  28. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and applications to a Landesman–Lazer-type problem set on \({\mathbb{R}}^N\). Proc. R. Soc. Edinb. Sect. A 129(4), 787–809 (1999)

    Article  MathSciNet  Google Scholar 

  29. Lam, N., Guozhen, L.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz condition. J. Geom. Anal. 24(1), 118–143 (2014)

    Article  MathSciNet  Google Scholar 

  30. Lam, N., Guozhen, L.: \(N\)-Laplacian equations in \({\mathbb{R}}^N\) with subcritical and critical growth without the Ambrosetti–Rabinowitz condition. Adv. Nonlinear Stud. 13(2), 289–308 (2013)

    Article  MathSciNet  Google Scholar 

  31. Li, G., Zhou, H.-S.: Asymptotically linear Dirichlet problem for the \(p\)-Laplacian. Nonlinear Anal. 43, 1043–1055 (2001)

    Article  MathSciNet  Google Scholar 

  32. Li, Y.Y., Shafrir, I.: Blow-up analysis for solutions of \(-\delta u = V e^u\) in dimension two. Indiana Univ. Math. J. 43(4), 1255–1270 (1994)

    Article  MathSciNet  Google Scholar 

  33. Liu, S.B., Li, S.J.: Infinitely many solutions for a superlinear elliptic equation. Acta Math. Sin. (Chin. Ser.) 46(4), 625–630 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Liu, Z., Wang, Z.-Q.: On the Ambrosetti–Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4, 563–574 (2004)

    Article  MathSciNet  Google Scholar 

  35. Luo, H., Li, S., He, W.: Non-Nehari manifold method for fractional \(p\)-Laplacian equation with a sign-changing nonlinearity. J. Funct. Spaces, Art. ID 7935706, 5 (2018)

  36. Martinazzi, L.: Fractional Adams–Moser–Trudinger type inequalities. Nonlinear Anal. 127, 263–278 (2015)

    Article  MathSciNet  Google Scholar 

  37. Miyagaki, O.H., Motreanu, D., Pereira, F.: Multiple solutions for a fractional elliptic problem with critical growth (preprint)

  38. Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: On \(p\)-Laplace equations with concave terms and asymmetric perturbations. Proc. R. Soc. Edinb. Sect. A 141(1), 171–192 (2011)

    Article  MathSciNet  Google Scholar 

  39. Mosconi, S., Perera, K., Squassina, M., Yang, Yang: The Brezis–Nirenberg problem for the fractional \(p\)-Laplacian. Calc. Var. Partial Differ. Equ. 55(4), 25 (2016). (Art. 105)

    Article  MathSciNet  Google Scholar 

  40. Pei, R.: Fractional \(p\)-Laplacian equations with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz condition. Mediterr. J. Math. 15(2), 15 (2018). Art. 66

    Article  MathSciNet  Google Scholar 

  41. Perera, K., Agarwal, R.P., O’Regan, D.: Morse theoretic aspects of \(p\)-Laplacian operators. Mathematical Surveys and Monographs, vol. 161, American Mathematical Society, Providence (2010)

  42. Perera, K.: Critical groups of pairs of critical points produced by linking subsets. J. Differ. Equ. 140(1), 142–160 (1997)

    Article  MathSciNet  Google Scholar 

  43. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1986)

  44. Schechter, M., Zou, W.: Superlinear problems. Pac. J. Math. 214(1), 145–160 (2004)

    Article  MathSciNet  Google Scholar 

  45. Takahashi, F.: Critical and subcritical fractional Trudinger–Moser-type inequalities on \({\mathbb{R}}\). Adv. Nonlinear Anal. 8(1), 868–884 (2019)

    Article  MathSciNet  Google Scholar 

  46. Zhang, Y., Shen, Y.: Existence of solutions for elliptic equations without superquadraticity condition. Front. Math. China 7(3), 587–595 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Iannizzotto for fruitful discussions with respect to Theorem 1. H. P. Bueno takes part in the project 422806/2018-8 by CNPq/Brazil. E. H. Caqui was supported by CAPES/Brazil. O. H. Miyagaki was supported by Grant 2019/24901-3 by São Paulo Research Foundation (FAPESP) and Grant 307061/2018-3 by CNPq/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamilton P. Bueno.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bueno, H.P., Caqui, E.H. & Miyagaki, O.H. Critical fractional elliptic equations with exponential growth. J Elliptic Parabol Equ 7, 75–99 (2021). https://doi.org/10.1007/s41808-021-00095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41808-021-00095-z

Keywords

Mathematics Subject Classification

Navigation